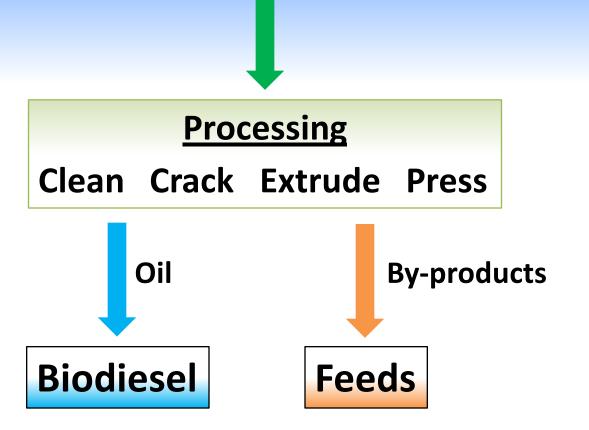

Evaluation of Biofuel Co-products asIngredients for Aquafeeds



Biofuel Co-products

Oil Seeds and Nuts Algae, Coconut, Jatropha, Rapeseed, Camelina –

Outline

- Criteria and methodology for evaluation of an ingredient
- Substitution of fishmeal protein by biofuel co-products in aquafeeds (opportunity and concerns)
- Discussion on future researches

Essential Information for Evaluation of an Ingredient

- Nutrient requirement of a target species
- Sustainability for production of the ingredient
- Nutritional evaluation of the ingredient

Selection Criteria for an Ingredient ---Nutritional evaluation

- Chemical composition
- Pellet physical quality
- Effects on attractiveness and palatability
- Digestibility and utilization of nutrients
- Effect on product quality

Evaluation of an IngredientChemical Composition

- Nutrient levels
- Nutrient balance (amino acid; fatty acid)
- Presence of anti-nutrients or contaminants

Proximate Composition of Different Ingredients (%)

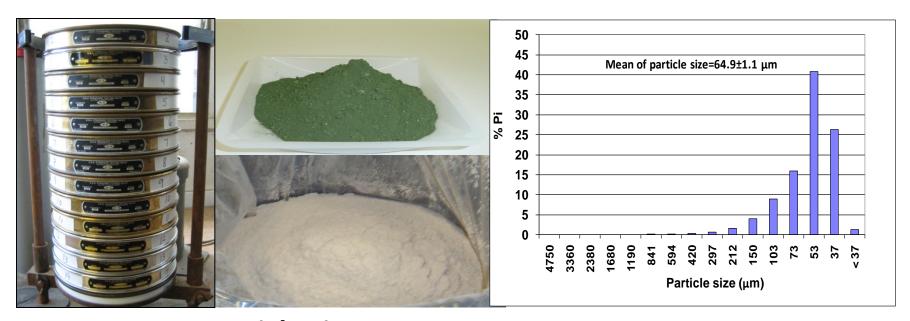
Analysis	Fishmeal	Soybean meal	DDGS	Camelina	Algae
DM	93	92	90	94	95
Protein	68	46	28	29	32
Lipid	6.5	1.9	5.7	33.5	0.9
Ash	18.5	5.1	5.2	3.5	17.9
Crude fiber		6.6	7.0		39.5

Amino acid profiles of different ingredients (% of total amino acids)

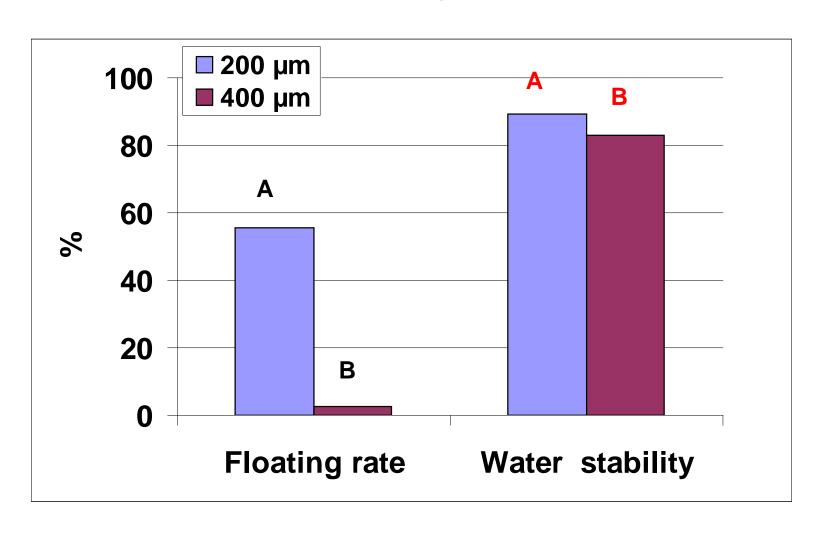
Amino acids	Pollock meal	Menhaden	SBM	DDGS	Camelina	Algae meal
Ala	6.2	7.8	5.1	7.5	5.3	10.6
Asp+ASN	8.8	9.6	8.9	6.6	7.8	6.6
Cys	0.8	0.6	1.0	2.2	1.4	0.8
Glu+Gln	12.3	11.0	15.7	16.3	13.2	12.1
Gly	8.4	8.1	4.9	4.3	5.0	9.9
Pro	6.2	4.4	5.1	8.8	5.2	8.0
Ser	4.7	3.6	4.9	4.7	4.2	5.4
Tyr	3.8	3.5	3.5	5.6	3.7	4.0
Taurine	2.0	1.0			0.2	0.1
Arg	7.6	9.2	8.9	4.7	9.0	6.2
His	2.2	2.9	3.6	3.4	3.4	2.4
Ile	5.6	4.7	5.3	4.1	5.4	3.6
Leu	6.7	7.5	7.1	10.9	9.4	9.4
Lys	8.5	9.6	6.8	3.3	6.8	4.9
Met	2.7	2.6	1.5	2.2	2.4	1.2
Phe	4.3	4.9	7.7	5.5	7.0	6.1
Thr	4.8	4.7	4.6	3.7	4.5	6.2
Val	5.5	5.8	5.5	5.3	6.2	4.3

Compositions of Traditional Ingredients & Microalgae

Ingredients	DM	Ash	СР	EE	Fe
			%		mg/kg
Menhaden meal	91.9	20.7	62.8	9.3	739
Soybean meal	92.5	6.8	47.8	1.9	53
Chlorella A	95.9	19.4	38.2	4.0	5882
Chlorella B	97.3	22.4	31.5	3.6	1592
Haematococcus pluvialis	91.6	10.8	40.3	5.0	75


Evaluation of an Ingredient Pellet Physical Quality

- Ingredient particle sizes
- Pellet durability
- Expansion of pellets after extrusion
- Oil absorption capacity of pellets
- Pellet water stability


Particle Size of Ingredients

- Physical parameters of pellets
 homogeneity, density and water stability
- Nutrient utilization

Particle size < 200μm

Effect of Different Particle Size on Floating and Water Stability of Pellets

Pellet Durability

Tumble pellets & 5-1/2" hex nuts @10 minutes at 50 rpm

Sieve and remove the fine particles

PD (%)=100*pellet after tumbling (g) /pellet before tumbling (g)

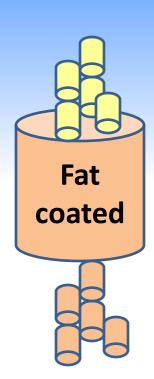
Pellet Expansion Measurement

Base diet 70% base diet + 30% test ingredient

Expansion: % change in the diameter of the test pellet =((pellet width-die diameter)×die diameter⁻¹)×100

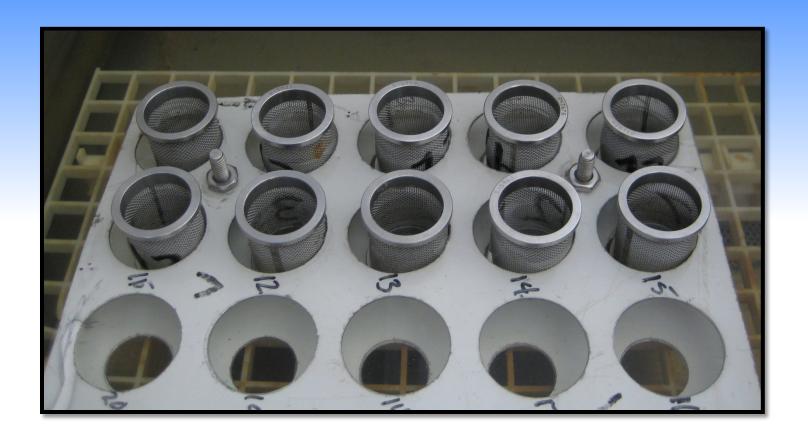
Pellet Characteristic & Density

Pellet characteristic	Sea water @ 20°C	Fresh water @ 20°C		
	Densit	y (g/L)		
Fast sinking	>640	>600		
Slow sinking	580-600	540-560		
Neutral	520-540	480-520		
Floating	<480	<440		


Oil Absorption Capacity

Weigh pellet sample (W1)

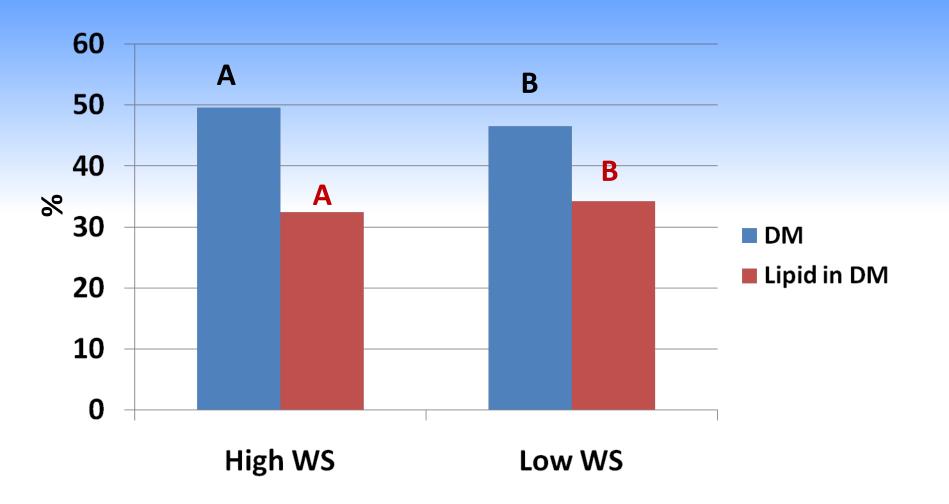
Fat coated pellets


Drain pellets for 10 mins

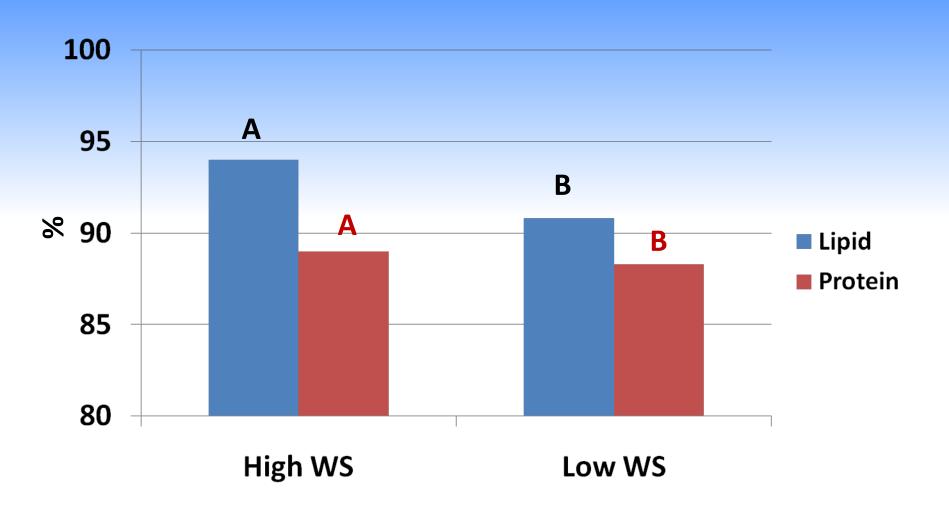
Weigh pellet sample (W2)

Oil absorption capacity= 100*(W2-W1)/W1

Water Stability of Pellets



100* dry matter of retention pellets (g)


Water stability%=

dry weight of original pellets (g)

Pellet Water Stability Affects the Dry Matter and Lipid levels of Stomach Contents

Water Stability of Pellets Affects Apparent Digestibility of a Diet

Summary

- Different ingredients can significantly affect both physical and chemical quality of feeds!
- Different ingredient may require different feed processing method!
- Processing method is important for quality of an ingredient as well as a feed!

Evaluation of an Ingredient Attractability/Palatability Test

Measurement of Food Intake

Evaluation of an Ingredient Digestibility

In vitro

<u>In vivo</u>

- Manual stripping; Rectal suction
- Siphoning; Settlement
- Dissection

Evaluation of an Ingredient Growth Trial

Green water system

Clean water system

Integrated Researches

Nutritional studies

Biochemistry

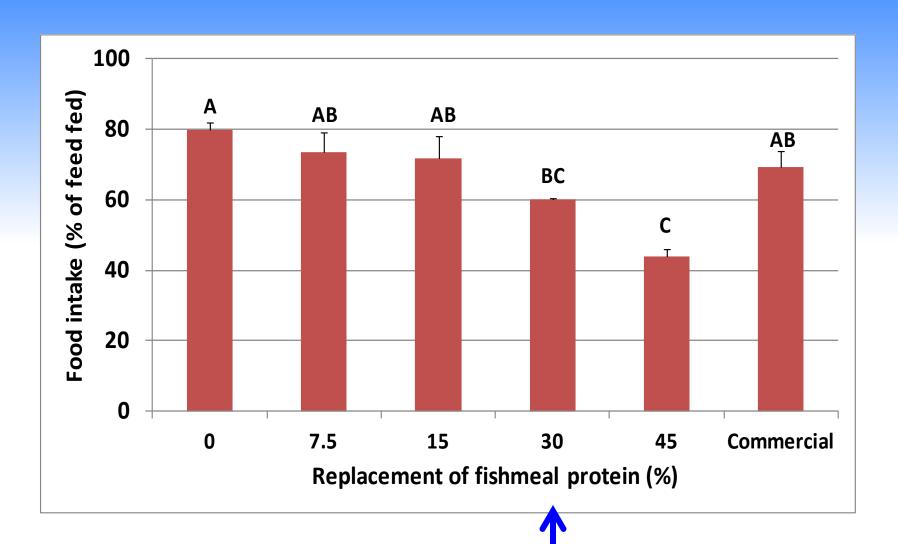
Feed processing technology

Substitution of Fishmeal Protein by an Algae Meal in Feed for Pacific Threadfin (Moi)

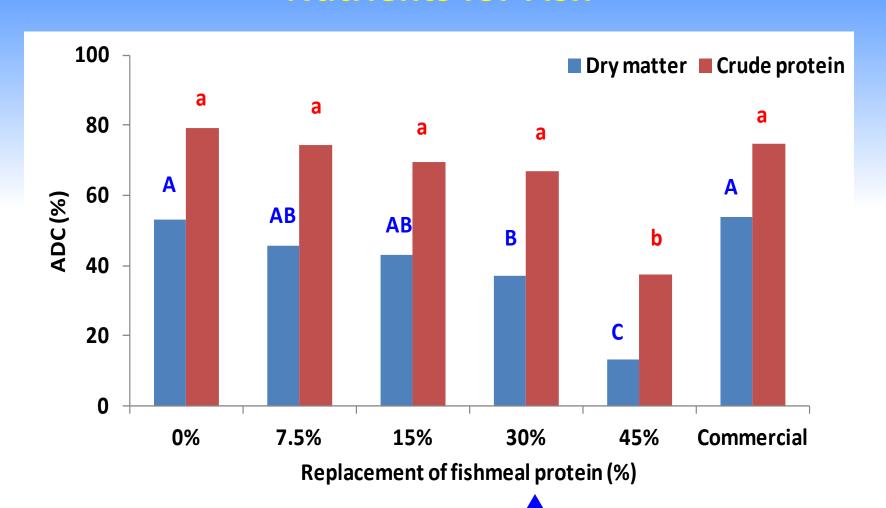
Fig. 8 Fresh Moi being prepared for steaming.

Commercial Feed

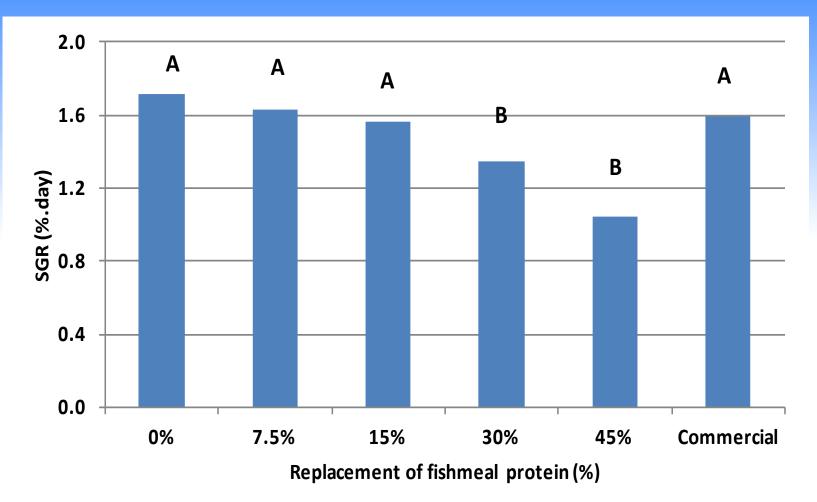
48-50% protein 14% lipid


Ol Feed 33-40% protein 10-12% lipid

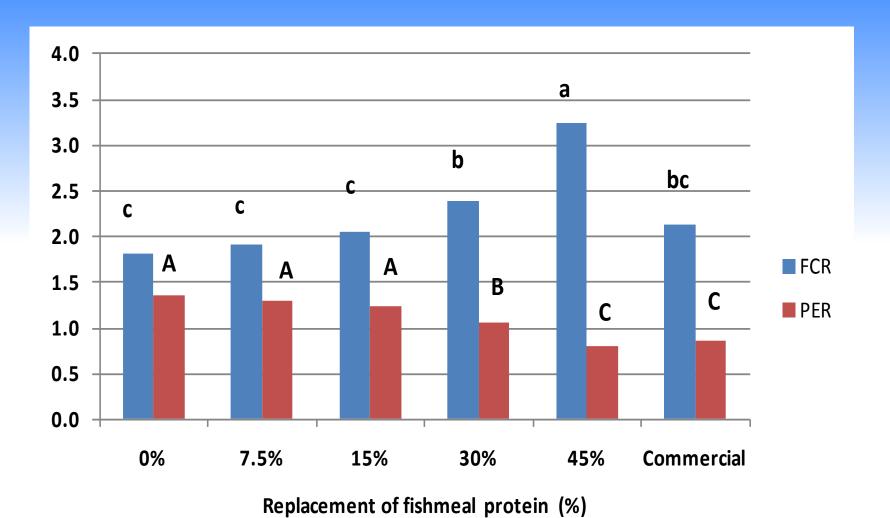
Formulation of Test Diets for Juvenile Moi


Ingredients	Replacement of fishmeal protein (%)							
	0%	7.5%	15%	30%	45%			
Pollock meal	30	27.8	25.6	21.2	16.8			
Soybean meal	20	20	20	20	20			
Algae meal (29.5% CP)	0	5	10	20	30			
Others	50	52.8	55.6	61.2	66.8			

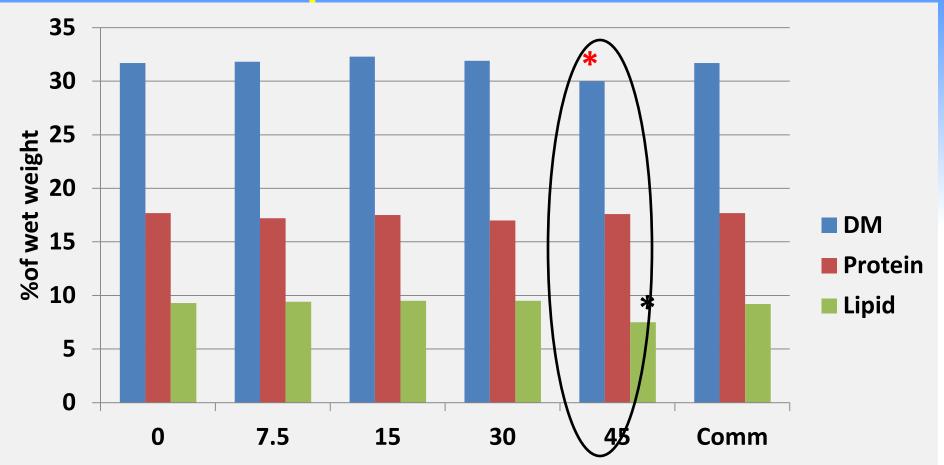
Crude protein: 37% Crude lipid: 13%: Gross energy: 19.3 kJ/kg


Effect of Algae Meal on Palatability of Fish

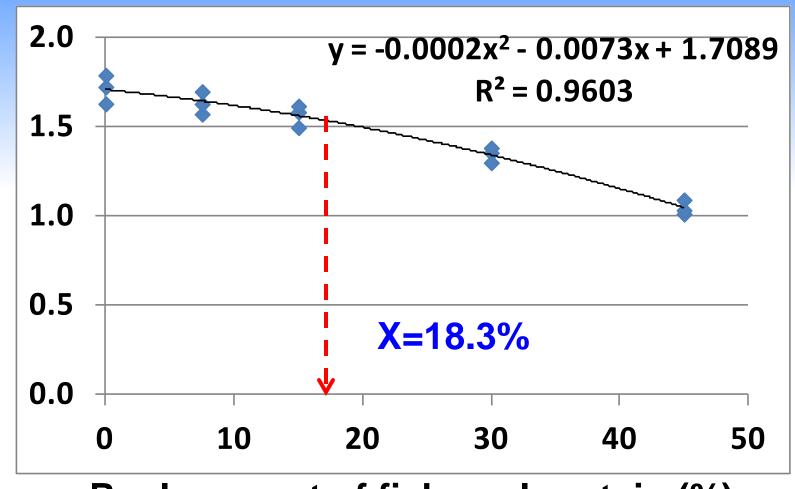
Effect of Algae Meal on Digestibility of Dietary Nutrients for Fish



Effect of Algae Meal on Growth of Fish



Effect of Algae Meal on Feed Utilization



Effect of Different Diets on Nutritional Composition of Fish Fillet

Replacement of fishmeal protein (%)

Optimal Replacement Level of Fish Meal Protein by the Algae Meal

SGR (%)

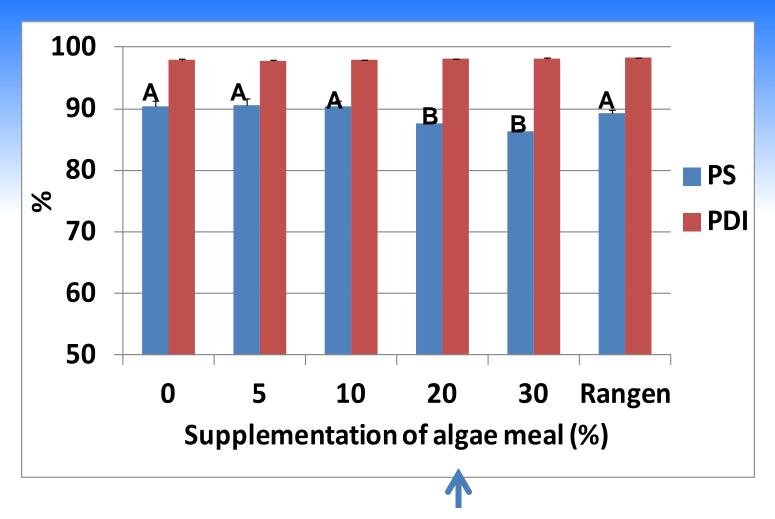
Replacement of fishmeal protein (%)

Amino Acids Contents of Test Diets and Ingredients

Amino acids	Commercial	Diet	Diet	Diet	Diet	Diet	Fishmeal	Algae
		1	2	3	4	5		
Dispensable AA		g/1	L00 g d	liet as	fed			
Taurine	0.46	0.50	0.46	0.41	0.33	0.28	2.74	0.02
Indispensible AA								
Methionine	1.08	0.81	0.79	0.77	0.71	0.70	4.94	0.34
Phenylalanine	2.37	1.67	1.65	1.56	1.52	1.46	2.09	1.66

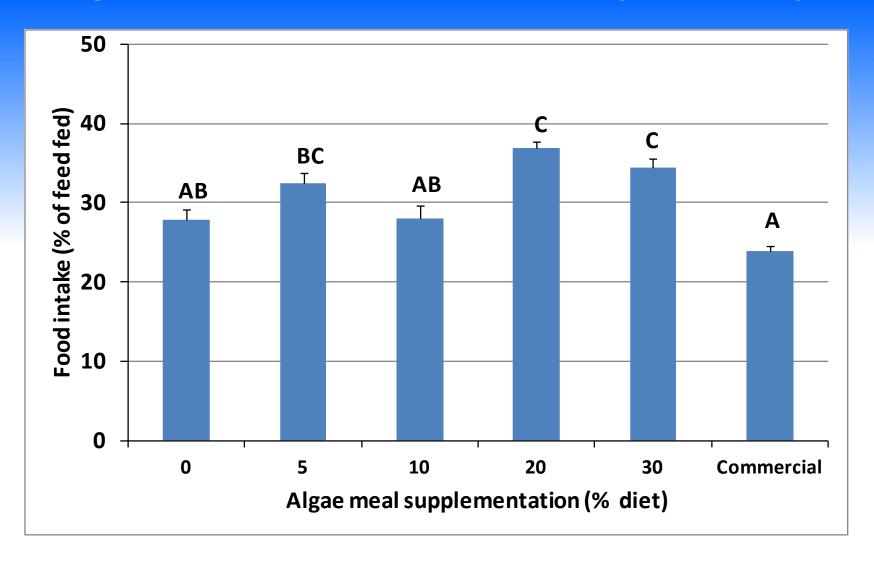
Summary

- The algae meal can replace 18% fishmeal protein based on performance of fish;
- The substitution level can be up to 30% based on feed utilization and nutritional composition of fish;
- Deficiency of amino acids in the algae meal may be one of the reasons for the poor performance of fish fed the high algae diet.

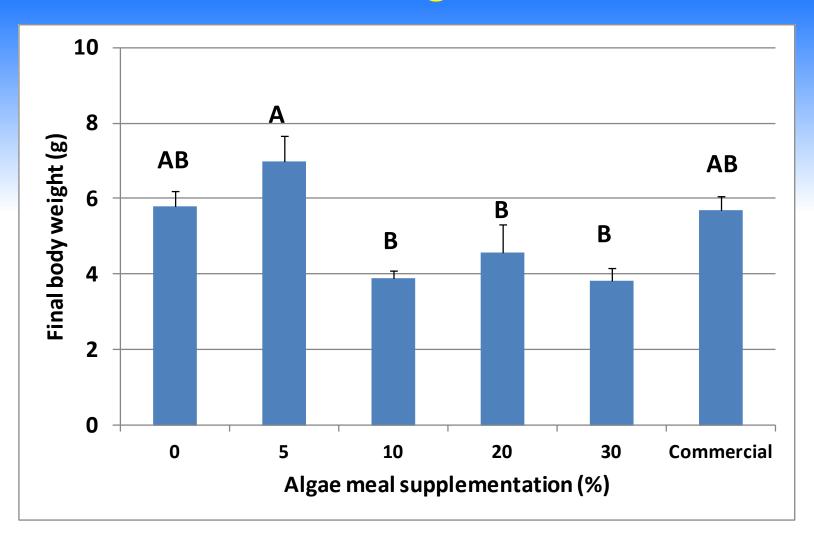

Substitution of Fishmeal Protein by an Algae Meal in Shrimp Feeds

Formulation of Test Diets for Shrimp

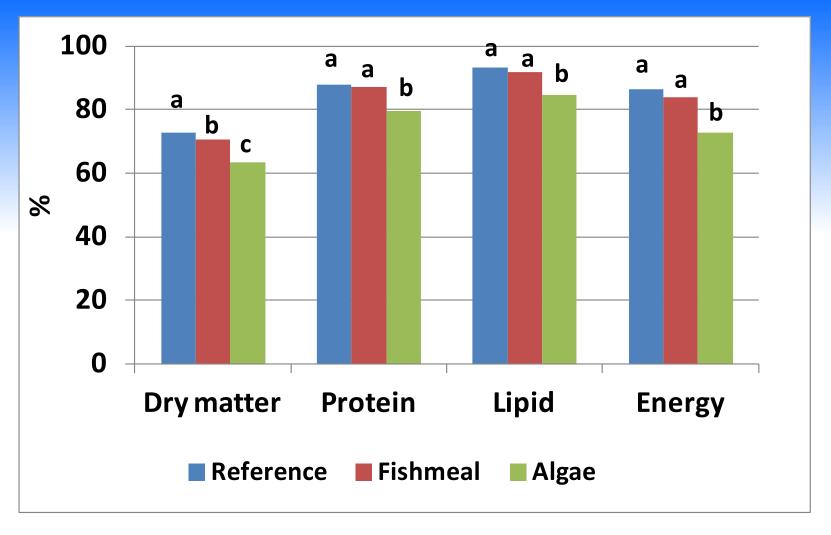
Ingredients	Replacement of fish meal protein (%)					
	0%	16%	32 %	64%	100%	
Menhaden meal	15	12.7	10.4	5.8	0	
Soybean meal	25	25	25	25	25	
Algae meal (29.5% CP)	0	5	10	20	30	
Others	60	57.3	54.9	49.2	45	


Crude protein: 33%; Crude lipid: 9%

Water Stability and Durability of Pellets



Replaces 64% fishmeal protein


Algae Meal Enhances Palatability of Shrimp

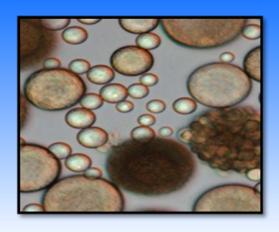
Growth of Shrimp Fed Diets with Different Levels of Algae Meal

Digestibility of Dietary Nutrients in Shrimp

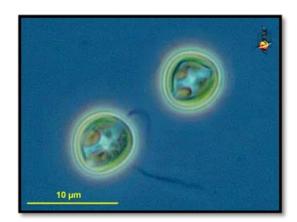
Test diet for digestibility: 30% ingredient +70% reference diet

Summary

Algae meal tested


- Enhances shrimp palatability;
- Does not affect pellet durability but decreases water stability of pellet;
- Tends to decrease growth of shrimp;
- Has lower digestibility than fish meal.

Sources of Lipid/Long Chain PUFA


Dinoflagellate alga (Crypthecodinium Cohnii)

Thraustochytrids (schizochytrium)

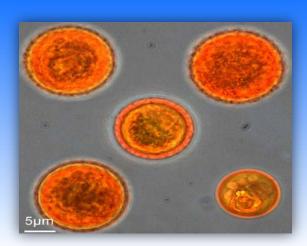
Isochrysis galbana

Pavlova lutheru

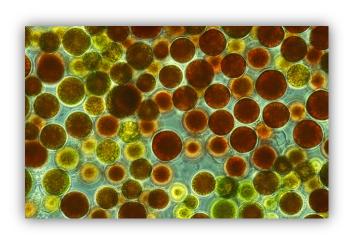
http://phytoonline.mdamirpp.net/

Nannochloropsis occulata

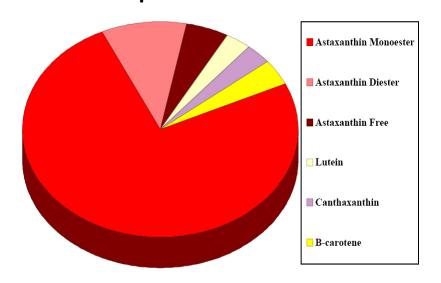
Fatty Acids Profiles of Different Ingredients


(% of Total Fatty Acids)

Ingredients	18:2n-6	18:3n-3	20:4n-6	20:5n-3	22:6n-3	Chol.
Menhaden oil	1.3	0.3	0.2	11	9.1	0.52
Cod liver oil	1.4	0.6	1.6	11.2	12.6	0.57
Tallow oil	3.1	0.6				0.1
Soybean oil	51	6.8				
Corn oil	58	0.7				
Chaetoceros sp	1	0.4	3	16.7	0.8	
Pavlova lutheri	2.1	2.1	0.5	28.3	15.5	
Isochrysis galbana	8.6	4.5		0.9	19.4	
Cryptomonas sp	0.6	25.1	0.2	12	6.6	
Rhodomonas sp	1.9	25.2		8.7	4.6	
Schizochytrium sp	0.7	0.11	2.9	0.6	31.4	


Chol, cholesterol, % of diet

(NRC, 1993, 2011; Reitan et al. 1997 and Renaud et al., 1999. Aquaculture)


Nutritional Pigments

Dunaliella Salina produces β-carotene

Chlorella produces lutin and astaxanthin

Haematococus produces mixed carotenoids

Astaxanthin Improves Pigmentation in Shrimp

Concerns

- Nutrient levels and balance
- Anti-nutritional factors or contaminants
- Availability of nutrient (digestibility, palatability)
- Processing methods for ingredients and feeds
- Quality of end product (flavor, texture and nutritional values)
- Production and cost of a by-product

Future Research

- More research to update nutrient requirements and thus formulation for different farmed fish
 - --- Culture system/condition
 - --- New species or family of animal

Future Research

- Multidisciplinary collaborative researches
 - ---ingredient selection
 - ---selective breeding for optimal family
 - ---processing technology development

Future Research

Standard research diet development

Ingredients

Formulation

Feed processing protocol

Evaluation methods

Acknowledgements

Funding by Agricultural Research Service, United
 States Department of Agriculture

