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Abstract: Seaweeds are a renewable natural source of valuable macro and micronutrients that
have attracted the attention of the scientists in the last years. Their medicinal properties were
already recognized in the ancient traditional Chinese medicine, but only recently there has been a
considerable increase in the study of these organisms in attempts to demonstrate their health benefits.
The extraction process and conditions to be used for the obtention of value-added compounds from
seaweeds depends mainly on the desired final product. Thermochemical conversion of seaweeds,
using high temperatures and solvents (including water), to obtain high-value products with more
potential applications continues to be an industrial practice, frequently with adverse impact on
the environment and products’ functionality. However more recently, alternative methods and
approaches have been suggested, searching not only to improve the process performance, but
also to be less harmful for the environment. A biorefinery approach display a valuable idea of
solving economic and environmental drawbacks, enabling less residues production close to the much
recommended zero waste system. The aim of this work is to report about the new developed methods
of seaweeds extractions and the potential application of the components extracted.

Keywords: seaweeds; added-value compounds; sustainable technologies; biorefinery;
food applications

1. Introduction

Seaweeds or macroalgae are multicellular photosynthetic plant-like organisms that
grow mainly in the seas and oceans. They represent an economically valuable natural
resource, widely available and their potential as food-grade feedstock should not be
disregarded, particularly in the forecast context of nutrients shortage due to the global
population growth. Further, seaweeds sustainable cultivation and harvesting is feasible,
as sea water covers ca. 70% of the Earth surface and they have generally high growth
rates, do not compete with agriculture for land and potable water and have low or neutral
greenhouse gas emissions. Thus, mariculture has the potential to supply environmentally
sustainable and healthy foods, ensuring that the United Nations Sustainable Development
Goals and Paris Agreement are achieved, making them widely accessible to different layers
of society [1].

Countries in East and Southeast of Asia are dominant both in seaweed farming and
consumption. The world production of marine macroalgae has more than tripled from 10.6
to 32.4 millions of tons in the period between 2000 and 2016 [2]. In the last decade, more
than 291 species have been used as food, feed, fertilizer or for industrial applications [3].
Even though nowadays seaweeds are not yet normally included within western diets, the
main use of seaweed worldwide is for direct human consumption. Seaweeds are also used
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directly in animal feed or in soils as natural fertilizers [4], but the most relevant application,
besides food, is in the production of ingredients (mainly, but not limited to, hydrocolloids)
for the food and cosmetic industries.

However, the real nutrition potential varies from species to species, seaweeds have
generally been identified as a rich source of valuable macro and micronutrients like pro-
teins, polyphenols, pigments, minerals as well as carbohydrates such as carrageenan and
alginate. Moreover, some species are also rich in vitamins, such as C and B12 [5]. Seaweeds
are traditionally used in Asia for their nutritional properties, as well as for therapeutic
applications. However, only in recent years, there has been a considerable increase in the
study of bioactivities and bioprospecting of these organisms in attempts to enlighten their
health effects and related mechanisms [6].

Though seaweeds may be consumed directly, the industrial focus is on the thermal
conversion of seaweeds to obtain added-value products with more potential applications
than the conventional raw material [7]. The current processes have several limitations
for industries, mostly focused on the high consumption of energy, solvent and time. Fur-
thermore, severe processes, with high temperatures and very long extraction times, may
cause deleterious effects on the compounds and their functionalities. Lately, other than
thermochemical process methods are used for the extraction of seaweeds. The new de-
veloped methods search not only to improve the process, but also to be less harmful for
the environment.

An attractive option for the seaweed valorization is to use the concept of a biorefin-
ery [8]. The extraction of a single product is frequently not profitable, as it can involve
high costs and generate large amounts of wastes, whereas a biorefinery process aims
to fully maximize the use of the biomass to produce multiple products, with minimal
waste generation.

In this context, this review will focus on the latest improvements in the methods used
for the extraction of bioactive compounds from seaweeds and their sustainable application
into value-added products with different functionalities.

2. Seaweeds Classification and Chemical Composition

The group of macroalgae, also known as seaweeds, is composed by autotrophic and
photosynthetic organisms that can measure from few centimeters to 100 m of length. Differ-
ent from terrestrial plants, they do not present conductive tissues, absorbing nutrients on all
their exposed surfaces [9]. The seaweeds can be classified based on their pigmentation into
three groups: brown seaweeds (phylum Ochrophyta, class Phaeophyceae), red seaweed
(phylum Rhodophyta) and green seaweed (phylum Chlorophyta) [10]. More than 16,000
species are described. The red macroalgae is the biggest group containing about 7300
known species, followed by the green and brown macroalgae with 6700 and 2000 identified
species, respectively [11]. The taxonomic classification becomes complex due to the differ-
ent criteria applied. According to the kingdoms of life proposed by Cavalier-Smith [12],
Rhodophyta and Chlorophyta are included in the kingdom Plantae, while Ochrophyta is
in the kingdom Chromista.

The red seaweeds are dominated by the presence of phycoerythrin and phycocyanin
pigments, covering the expression of other colors produced by chlorophyll a, b-carotene
and xanthophylls [13]. The green seaweeds are rich in chlorophyll a and b pigments, which
hide the appearance of b-carotene and xanthophylls also present [13], varying their colors
from greenish yellow to dark green. Green seaweeds present high growth and reproduction
rates, irrespective of geographical location and season, enabling their production at large-
scale and harvest to be more than once in a year. The brown seaweeds have a pigmentation
that varies from yellow to dark brown. These colors appear because of the xanthophyll
pigment fucoxanthin’s high concentration, masking other pigments such as b-carotene,
chlorophyll a and c, as well as other xanthophylls [13]. This group of seaweed is divided
into two subgroups: kelps, such as Laminaria hyperborean, Laminaria ochroleuca and Saccorhiza
polyschides, which can achieve more than 50 m in height and create subaquatic forests; and
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fucales, such as Fucus vesiculosus, Fucus serratus and Himanthalia elongate (known as sea
spaghetti) [10].

Marine seaweeds have an interesting nutritional profile, being a rich source of biocom-
pounds belonging to different chemical groups like polysaccharides, proteins, minerals,
pigments, phenolic compounds and lipids. The biochemical composition of seaweeds
depends on several environmental and stress conditions such as salinity, cultivation loca-
tion, depth, changes in temperature, nutrient enrichment, harvesting period, UV radiation
exposure, intensity of herbivores or pollutants and biotic factors such as species, life
stage, age or reproductive status [14–16]. All these factors can influence the production
of secondary metabolites that have shown a wide range of biological properties, such
as: anti-inflammatory, antioxidant, antimicrobial, anti-proliferative, antiviral, antidiabetic,
anticancer, neuroprotective and photoprotective [4,17–24]. Others external aspects that
may have effects on the seaweeds profile include the different procedures of extraction and
pretreatments used to obtain the bioactive compounds. The wide chemical composition
of seaweeds, their diversity and availability, allows a huge potential for different appli-
cations [25]. For example, the technological attributes of hydrocolloids, such as alginate,
carrageenan and agar, make them the most regularly used gelling compounds by industry
for foods, pharmaceutical and biotechnological applications [26].

2.1. Carbohydrates

Polysaccharides are mainly located in the cell walls of seaweeds. The polysaccharides
content in seaweeds is species dependent with values ranging from 4% to 76% dry weight
(d.w.) [27], with a wide application due to their functional and bioactive properties [28].
Their chemical composition and molecular weight are also dependent on the species of the
raw seaweed as well as on the extraction procedure. It is well known that different groups
of seaweeds contain different compounds. Brown seaweeds (Phaeophyceae) have high
content of polysaccharides as laminarian, fucoidan, and alginate. Seaweeds of the phyla
Chlorophyta and Rhodophyta (green and red seaweeds) contain other groups of polysac-
charides, such as ulvan, agar and carrageenan [29]. The polysaccharides carrageenan and
agar (with important thickening and gelling features) are mainly found in red seaweed and
ulvan in green seaweed [13,30].

Generally, brown seaweeds contain high amounts of soluble carbohydrates and are
known to produce three major polysaccharides: alginates, laminarins and fucoidans [23].
The physiological and biological properties of fucoidans are very interesting to the phar-
maceutical industry, due to their anticoagulant, antioxidant, antiviral, antimicrobial, anti-
tumor, anti-mutagenic, immune-modulating, and anti-inflammatory activities [31–33].
Laminarins have also demonstrated good bioactive properties such as antibacterial, an-
tioxidative and anticoagulant potential. Due to their resistance to hydrolysis in the upper
gastrointestinal tract, they are classified as dietary fibers [28]. Alginate provides to the
seaweed flexibility and stability against the marine currents. Such mechanical feature can
be used in industry as thickener, stabilizer or/and gelling agent, important to the food,
cosmetic or biomedical sectors [34]. It is estimated that commercial brown seaweeds may
contain up to 40% of its d.w. as sodium alginate. Further, mannitol is the main chemical
compound found in four brown seaweeds (i.e., Carpophyllum exuosum, Carpophyllum plumo-
sum, Ecklonia radiata, Undaria pinnatifida) accounting for between 22.2–30.7% d.w. [8] and in
the context of biorefinery, mannitol itself is considered an added-value by-product.

Due to the high content of carbon and low content of lignin, macroalga have been
considered a viable biomass for biofuels production and are included in the third generation
bioethanol resources [35,36]. However, as several fractions of macroalgae have high added
value, bioethanol production is usually considered as a part of a biorefinery process where
high added value fractions are recovered for other applications and only the residual
low value fraction, usually rich in cellulose, is used as substrate, after hydrolysis, in the
fermentative bioethanol production process.
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Seaweed polysaccharides are also used in agriculture, as they stimulate plant growth
or protect them from diseases since they can inhibit plant viruses and prevent fungal
diseases and bacterial infection [29].

2.2. Proteins

Depending on the species and the season, the protein content of seaweed varies
between 5% and 47% d.w. [27], covering all the essential amino acids. Moreover, some
species of seaweed (mainly from red seaweeds) are known to contain protein levels similar
to those of traditional protein sources, such as meat, egg, soybean, and milk [30]. In this
context seaweed is a viable alternative source of protein. Brown seaweeds usually contain
a low protein content (up to 15%) when compared to that of green (up to 26%) or red
seaweed (up to 47%). However, protein bioavailability in seaweeds is usually low, due to
their higher content of polysaccharides and dietary fiber [37,38].

Study on the amino acid composition of seaweeds demonstrated that green seaweeds
have lower percentages of aspartic and glutamic acids, the percentages of lysine and argi-
nine were higher in red seaweeds, while brown seaweeds tended to show more methionine
than green and red seaweeds [39]. Seaweeds are a source of lysine, an essential amino
acid often present in low quantities in terrestrial plant-protein sources, and in contrast
to animal-protein sources, are not associated with cardiovascular diseases and diabetes,
and so have been highly recommend for a healthy and balance diet [38]. Furthermore,
species such as Ulva and Caulerpa contain high levels of arginine and glycine, in addition to
histidine and taurine which present important activities for fetus development [40].

2.3. Pigments

The main natural pigments found in marine seaweed are chlorophylls, carotenoids and
phycobiliproteins. Chlorophyll is the primary pigment in macroalgae that is responsible for
the energy caption from the sunlight, while other pigments like carotenoids, also produced
by seaweeds, assist in transporting the adsorbed energy and in the protection of tissues
against photo oxidative damage [8]. Carotenoids are known to have positive influence on
human nutrition and health, and the best known biological function of carotenoids is the
provitamin A activity, responsible for the ability to form vitamin A [41].

Phycobiliproteins are the principal photoreceptor for photosynthesis in red sea-
weeds [42], being phycoerythrin (red color) the most abundant [42,43]. The pigments
in brown seaweeds were found to be between 3.4–9.8% of the algal dry weight, and the
predominant pigment compounds were pheophytin a, a derivative of chlorophyll [8] and
the carotenoid fucoxanthin [42]. Like other compounds, the pigment content varies with
the season, such as in Ascophyllum, their content of violaxanthin, fucoxanthin, carotene and
chlorophyll a were higher from March to June and lowest from July to November [44].

The main pigments present in green macroalgae belong to the groups of chlorophylls
(chlorophylls a and b) and carotenoids (xanthophylls) [45]. For example, in Ulva lactuca L.
was detected in diminishing order: chlorophyll a, chlorophyll b, 9-cis-carotene, b-carotene,
trans b-carotene, carotene-isomers, violaxanthin, astazanthein, antheraxanthin, lutein,
zeaxantin and cryptoxanthin [46].

2.4. Phenolic Compounds

Phenolic compounds are secondary metabolites that play an important role in the
development and growth of plants. They are also synthetized in macroalgae and their total
phenolic content (TPC) has been positively correlated with their corresponding antioxidant
activity [47]. The group of brown seaweeds has been reported to have the highest amounts
of phenolic compounds [48]. Further, brown seaweeds contain a specific group of phenolic
compounds called phlorotannins. Inside the seaweed cell, the phlorotannins can be found
in the soluble or insoluble form [49]. E.g., eighteen different phlorotannins were found
in brown seaweed from the Romanian Black Sea coast [21]. Meanwhile, in green and
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red seaweeds the phenolic compounds found in largest proportion are bromophenols,
flavonoids, phenolic acids, phenolic terpenoids and mycosporine-like amino acids [15].

2.5. Minerals

Mineral content of seaweeds is generally high and varies from 8% to 40% [50]. The
main minerals found in seaweeds are P, Na, K, Ca, Mg, Fe, Cu, Zn and Mn. The mineral
concentration depends on the type of seaweed i.e., brown, green or red. Brown seaweeds
have higher concentrations of K and Ca compared to green and red macroalgae while
green seaweeds have higher content in Mg, Fe and Cu [51]. Moreover, the mineral content
of seaweed varies according to the season [50,52]. Their ability of being bioadsorptive
and bioaccumulative, makes the mineral content from 10 to 100 times higher than in land
plants [53].

2.6. Lipids

As for the other types of compounds, the total lipid content of seaweeds is affected
by light, temperature, atmospheric constituents, different geographical locations and time
of collection [52,54]. Further, seaweed extracts’ lipid composition and extraction yield are
strongly influenced by the solvents used [55]. However, in general, the lipid content in
seaweeds is low (<7% DW). Despite the low content of lipids, these are rich in omega-3
polyunsaturated fatty acids, making this an interesting seaweed’s fraction [53]. For instance,
some red seaweeds contain docosahexaenoic acid (DHA) which is recognized as one of the
most important n-3 polyunsaturated fatty acid (PUFA) to reduce the risk of cardiovascular
diseases [56].

2.7. Vitamins

Some seaweeds contain about a dozen times more vitamins than terrestrial plants or
animal, including fat and water soluble vitamins such as A, D, E, K, C, B1, B2, B9 and B12,
with emphasis on the last one for being one of the few found in a non-animal source and
present in active form that can be absorbed by humans; this is important to vegetarian
diets [1,26,57]. Red seaweeds are an important source of vitamin A, and species such as
Porphyra umbilicalis and Gracilaria changii have high quantities of vitamin C [15]. According
to [58] the seasonality is an important factor, reporting that the highest content of vitamin
C was found in seaweeds collected in the Northern Hemisphere around April and May.

3. Recovery of Added-Value Compounds

The fractionation processes for the recovery of seaweed functional biocompounds can
be divided in: raw material pre-treatment, extraction (single or multiple steps), followed
by separation and concentration [28]. In many cases the use of additional pre-treatments,
such as alkali pretreatment to remove sulphate groups from agar, improve the recovery
final results [49,59]. The current processes have several limitations for industries, mostly
focused on the high consumption of energy, solvent and time. Moreover, severe processes,
with high temperatures and very long extraction times, may cause deleterious effects to
the compounds and their functionalities, which underlies the importance to develop and
apply new methods of extractions.

3.1. Conventional Extraction Methods

Conventional solid-liquid extractions, depending on the seaweed species and the type
of biocompounds, often require many hours of extraction to accomplish optimum extrac-
tion yield and quality [60]. These may include infusion, percolation, Soxhlet extraction,
maceration, steam distillation, among others [28,60–62]. The solvent choice is an important
step for the solubilization of the target compound, allowing selectivity, high efficiency with
the increase of mass transfer, tissue damage, solvent diffusion, in combination with differ-
ent extraction technologies or stirring [62]. For instance, in the case of phycocolloids, the
most popular solvent is hot water due to the hydrocolloids’ water solubility and because it
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is a major component of fresh biomass [60,62]. Hot alkali extraction (also aqueous-based)
is used for alginate/alginic acid extraction, converting insoluble alginate salts into water
soluble alginate salts. Depending on the target compound other solvents like acids or
organic solvents (hexane, chloroform, methanol, ethanol, etc.) are commonly used.

The heating mechanism of conventional extractions is also critical for a successful
extraction and usually involves convection through the solvent and conduction from the
surfaces to the nucleus of the matrix particles [63]. Further, it is difficult to optimize the
bioactive compounds extraction since they are highly dependent on harvesting season,
seaweed sources, geographical region, concentration of solvents, temperature, time, pH
and raw material size [60].

Nowadays, industrial practices employ large amounts of chemical solvents during pre-
treatment and extraction, generating effluents throughout the production process, which
can be health and environment hazardous [60]. Regarding these common weaknesses
of conventional extractions, other methods have been approached, from an economic
perspective, called “green” or “alternative” methods, which may reduce energy, solvents
and extraction time to a few minutes. The development of sustainable extraction methods
is a key to boost value-addition of the globally expanding seaweed industry [28].

3.2. Alternative Extraction Methods

As mentioned above, conventional extractions use severe and harsh processing con-
ditions, which can generate large amounts of hazardous wastes and raise environmental
concerns, as the creation of a substantial carbon footprint. Moreover, if the used solvent is
toxic, the downstream processing is essential to accomplish the food and pharmaceutical
industry regulations for application of safe end-products [28]. In this context, sustainable
extraction methods are currently a popular hot topic for research and development in
the recovery of natural products [28,60]. Further, the use of eco-friendly solvents, such as
ionic liquids, eutectic solvents, surfactants or solvents produced from biomass, is another
strategy to diminish the negative impact of the extraction process. An example is the use
of edible oils for the extraction of carotenoids from brown seaweeds [41]. The definition
of smart technologies is attributed to technologies that have the following features: non-
chemical, fast, energy-efficient, zero waste, non-hazardous, eco-friendly, low cost, versatile,
applicable to untreated biomass and able to combine with other green technologies [62].
Nowadays, for industry, the main aspects are quality, economy and eco-friendliness. The
green extraction methods search to reduce or avoid the use of solvents and increase the ex-
traction yields [28,60,62]. Several factors have to be taken into consideration when selecting
the extraction method: cost, time, recovery rate, volume and type of solvents, “greenness”
of the method and a possibility of scale-up. The conventional and less eco-friendly ex-
traction methods for seaweed biocompounds are the most common around the world.
However, it is essential to demonstrate through continuous research, the efficiency and
safety of the sustainable methods, in order to reduce implementation costs and captivate
investment for industrial implementation [28,60]. Table 1 presents an overview of the main
alternative technologies that have been applied in the extraction of different biocompounds
from seaweeds and the yields achieved.

3.2.1. Microwave-Assisted Extraction

Microwave-assisted extraction (MAE) is the most used, cost-effective and non-chemical
technology nowadays at the laboratory scale. This technology uses microwave irradia-
tion, generating directly heat within the matrix, through collisions and frictions between
molecules, and, consequently, resulting in fast heating (a few seconds) [60,62,63]. In other
words, MAE operates in the electromagnetic waves spectrum, which waves are non-
ionizing and the frequency range between 300 MHz and 300 GHz. The waves’ absorption
can originate two different processes, dipole rotation and ionic conduction, depending on
temperature and causing structural changes within the matrix. Dipole rotation is based on
dipolar fractions alignment of the samples with the electric field created by the microwaves,
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colliding among themselves and generating heat. Ionic conduction is based on the move-
ment of charged ions due to the electrostatic field influence created by the microwaves,
and the friction of these movements creates heat [28,62,63]. Important factors to consider
include frequency, power, extraction time, extraction pressure, ratio of solid/liquid, sol-
vent concentration, solvent properties, matrix characteristics, temperature and number of
extraction cycles.

Table 1. Different alternative extraction processes of biocompounds from seaweeds.

Seaweed
Group Seaweed Specie Compounds Extraction

Process
Extraction

Conditions Results Reference

Brown

Laminaria japonica
Carotenoid

(Fucoxanthin) MAE
300 W; 2450 MHz; 60 ◦C;

10 min; EtOH; 1:15

5.13 mg/100 g
[64]Sargassum fusiforme 2.12 mg/100 g

Undaria pinnatifida 109.3 mg/100 g

Brown Laminaria japonica Carotenoids
UAE 30 min; MeOH; 1:20 0.336 g/kg

[65]
Chlorophyll a 3.028 g/kg

Brown

Undaria pinnatifida Carotenoid
(Fucoxanthin) SFE

400 bar; 40 ◦C; 180 min;
2.32 g/min CO2

38.5 mg/g [66]

200 bar; 50 ◦C; 60 min; EtOH;
28.17 g/min CO2

0.00753 µg/g [67]

400 bar; 60 ◦C; 270 min; EtOH
1.7–3.2%; 0.005 g/min CO2

994.53 µg/g [68,69]

Brown Laminaria japonica

Carotenoids
(Fucoxanthin,

lutein,
zeaxanthin,
b-carotene)

PSE
170 bar; 51 ◦C; EtOH;

10 g/min
0.233 g/kg [65]

Chlorophyll a 2.335 g/kg

Brown Undaria pinnatifida Carotenoid
(Fucoxanthin) PSE

40 bar; 60 ◦C; DME and EtOH
10% 80% [70]

5.9 bar; 25 ◦C; <43 min; DME;
0.3 g/min 390 µg/g [68,69]

Brown Eisenia bicyclis Carotenoid
(Fucoxanthin) PSE 103.4 bar; 110 ◦C; 5 min; 2 g;

EtOH 90%; static 0.42 mg/g [71]

Brown Ascophyllum nodosum
Total phenolics

UAE 25 min; 0.03 M HCl; 114 µM
143.12 mgGAE/g

[72]Fucose 87.06 mg/g

Uronic acids 128.54 mg/g

Brown Ecklonia cava Fucoidans EAE Celluclast; 24 h; 50 ◦C 1.8% [73]

Brown Fucus vesiculosus
Fatty acids

SFE 304 bar; 60 ◦C; 60 min
21.9 mg/g

[74]
Polyphenols 20.2 mg/g

Brown Saccharina japonica Fucoidans SWE
NaOH 0.1%; 100–180 ◦C;
100–300 rpm; 20–80 bar;

10–20 min
13.56% [75]

Brown Undaria pinnatifida Fucoxanthin
EAE

DME + EtOH co-solvent;
pH 6.2; 37 ◦C; 100 mM; 0.05%

94%
[70]

Lipids 94%

Brown Carpophyllum
flexuosum Polyphenols MAE 1:30; 160 ◦C; 3 min; 850 W 8.6% [76]

Red Solieria chordalis Carrageenan MAE KOH 0.5%; 105 ◦C; 25 min 20% [77]

Red Gracilaria
vermiculophylla Agar MAE 10–20 min; 70–90 ◦C 14.4% [78]

Red Gracilariopsis
lemaneiformis Protein EAE 6% trypsin; pH 8; 34.6 ◦C, 6 h 15 mg/mL [79]

Red Porphyra yezoensis Peptides EAE pH 9; 50 ◦C; 60 min 55% [80]

Red Hypnea musciformis Carrageenan UAE 500 W; 20 min; H2O 49% [81]
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Table 1. Cont.

Seaweed
Group Seaweed Specie Compounds Extraction

Process
Extraction

Conditions Results Reference

Red Gelidium sesquipedale Protein SWE 185 ◦C; 2 mL/min; 240 min 150 mg/g [82]

Green Ulva intestinalis Ulvan UAE 66 ◦C; 40 min; pH 7 8.3% [83]

Green Ulva armoricana Ulvan
Protein EAE 50 ◦C, 3 h; 90 ◦C, 15 min; pH 6 30–40%

2–3% [61]

Green Ulva lactuca
Protein

PEF
Electric field strength of

7.5 kV/cm with 0.05 ms pulses
15%

[84]
Carbohydrates <15%

Green Ulva lactuca Protein PEF 50 pulses; 4 to 6 µs; 50 kV;
0.5 Hz 20% [85]

Legend: MAE—Microwave-assisted extraction; UAE—Ultrasound-assisted extraction; SFE—Supercritical fluid extraction; PSE—
Pressurized solvent extraction; EAE—Enzyme-assisted extraction; SWE—Subcritical water extraction; PEF—Pulsed electric field; GAE—
gallic acid equivalent.

MAE has many advantages, such as the consistency, efficiency, capability of heating
raw materials selectively and locally, improved mass transfer and tissue disruption, less
extraction time, less energy and solvent consumption, low cost, high extraction rate and
high quality of products. MAE can be applied directly in fresh biomass, and is currently
used in the extraction of different biocompounds (i.e., polysaccharides, phenolics, etc.) from
brown, red and green seaweeds [28,60,62]. Magnusson et al. [76] showed that MAE could
increase 70% of polyphenols yields from Carpophyllum flexuosum compared to conventional
extraction and Boulho et al. had 20% of carrageenan from Solieria chordalis [77]. However,
due to the fast heat generation of this technology and difficulties in accurately controlling
temperature, it is quite difficult to extract some thermolabile compounds (i.e., fatty acids,
pigments, proteins) [28]. There are two types of systems: the open and closed systems.
The closed system is used at higher pressure and temperature, and there is a possible risk
of explosion. The open system is cheaper, fully automatic, and used under atmospheric
pressure, which overcomes the problem of an explosion. However, it is less precise, not able
to work with simultaneous samples and requires longer extraction time when compared to
closed systems [60,63].

MAE can be scaled up to the industrial level, though with important restrictions due
to the limited wave penetration into the feedstock matrices. Furthermore, a significant
initial capital is needed and the equipment costs and operator skills are high, so more
research is required [28,60].

3.2.2. Ultrasound-Assisted Extraction

Ultrasound-assisted extraction (UAE) is defined by sound waves with high frequen-
cies >20 KHz, that propagate in compression and rarefaction waves. The passage of an
ultrasound wave induces the effect of acoustic cavitation in the solvent and the formation
of cavitation bubbles, which increase the contact surface area between solid and liquid
phase. This allows a better solvent penetration into the matrix and a fast solute diffu-
sion. Asymmetrical bubbles are generated by solid-liquid suspensions, the vapor from
the solvent gets entrapped within the bubble, leading to implosion and generating me-
chanical energy through microturbulence, which break the algal cell wall and enhance
extraction efficiency [28,60,62,63]. Parameters that may influence the extraction process
include pressure, temperature, intensity and frequency of the waves, surface tension and
viscosity of the solvent [28]. UAE improves the extraction yield and reduces extraction
time. It is an efficient, eco-friendly, simple and not expensive extraction technology in
comparison to other methods. It has been applied in the food industry due to its low cost
of equipment maintenance, small equipment size, direct scale-up to industrial scale and
decreased number of process steps [28,60,62]. There are still a small number of studies
on the extraction of compounds, mainly referring to phenolics, proteins and polysaccha-
rides from marine seaweeds using UAE, though with very promising results [28,60,62].
Rafiquzzaman et al. [81] showed that carrageenan yield and purity were better with UAE
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using alkaline and aqueous solvent than conventional extraction. Kadam et al. [72] also
concluded that laminarin extraction using UAE had greater yield and antioxidant activity
when comparing to conventional methods [60]. The major drawback is the fact that UAE
needs a significant starting capital for industrial scale due to the energy input and equip-
ment cost and its use is still limited. However, it can be an interesting technology used
alone or in combination with others methods [28,60,62].

3.2.3. Enzyme-Assisted Extraction

Enzyme-assisted extraction (EAE) is a technology that requires food digestive en-
zymes, such as proteases and carbohydrases to break down the complex seaweeds cell wall
and isolate the active compounds. This sustainable extraction method can be considered
the greenest among all the methods, as it does not use any harmful chemicals or organic
solvents. There are important parameters that improve the extraction efficiency of targeted
biocompounds, including pH, temperature, type of solvent (water or buffer), ratio sub-
strates:solvent:enzymes and mixing conditions [60,63]. EAE has several advantages, such
as eco-friendly, low cost, conversion of water-insoluble materials into water-soluble materi-
als, high efficiency and specificity in target end-products, process scalability and reduced
extraction time [28,61,63]. Up to date, there are few studies of EAE application in seaweeds.
EAE was used for carrageenan extraction from red seaweeds achieving high extraction yield
and good gelling properties [60]. Other studies showed that EAE preserved the structural
integrity of the target compounds (i.e., fucoidans, ulvans, proteins, lipids, etc.). Moreover,
the obtained products had important bioactivities suitable for cosmetic, nutraceutical and
pharmaceutical industries [28,61,73]. For instance, significant antihypertensive activity
has been described for hydrolyzed peptides from red seaweeds [86,87]. EAE extraction
applied on Sargassum muticum, Osmundea pinnatifida, and Codium tomentosum presented
the highest nitrogen and total phenolics contents, highest sulfated polysaccharide contents
and highest prebiotic activity, respectively. O. pinnatifida and C. tomentosum EAE extracts
showed inhibitory potential against α-glucosidase (38–49%) [86].

There are very few available enzymes for industrial use, specifically for substrates
found in seaweeds, and the ones that are available still have prohibitive costs. Therefore,
most EAE applications to seaweeds have used terrestrial biomass enzymes. For example,
the use of cellulases for the release of glucose (fermentable sugars) could result in high
glucose yields. However, the terrestrial biomass enzymes show slow enzymatic kinetics
and low substrate specificity, and thus, the exploitation of novel enzymes potential from
marine sources could improve the extraction efficiency and boost the EAE process [28].

3.2.4. Supercritical Fluid Extraction

Supercritical fluid extraction (SFE) is a technology that mostly uses carbon dioxide
(CO2) and water (H2O) as supercritical solvents. The purpose of SFE is to reach the critical
pressure and temperature of the fluid, operating above this critical point, to penetrate
rapidly into solid materials and improve extraction process [28,60,63]. Once the supercriti-
cal state is reached, the supercritical fluid density is similar to a liquid and the viscosity is
low in a range between liquid and gas, facilitating solute mass transfer from the matrix to
the solvent [28]. CO2 is the most used solvent because its critical point allows labile com-
pounds extraction. There are some other possible supercritical solvents such as methanol,
ethanol, methane, ethane, propane, ethylene, propylene and acetone. However, none of
the latter meet the principles of “green chemistry and engineering” [28,60]. SFE can be
used for analytical purposes, sample preparation, and extraction of target compounds or
removal of undesirable products on a larger scale. The main factors of this technology that
affect the extraction process are as follows: temperature (40–90 ◦C), pressure (100–400 bar),
type of fluid, materials size and shape, moisture content and solvent flow-rate. Impor-
tant advantages include: eco-friendliness, non-flammability, low cost, solvent availability,
low time consumption, efficient extraction and high selectivity [60]. The most extracted
compounds from seaweed and microalgae using SFE method are antioxidants and neutral
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lipids, as CO2 is a good solvent for non-polar target compounds. For more polar com-
pounds, an organic co-solvent, such as ethanol, is needed, and the advantages over other
extraction methods are diluted [60]. Low polar seaweed biocompounds extracted with
SFE include polyphenols, fatty acids and fucoxanthin and have application in the food
and pharmaceutical industries [28,67–69,74]. Bogolitsyn et al. [74] showed that fatty acids
and polyphenols from brown seaweeds (Fucus sp.) were obtained using SFE technology
with a content of 20 mg/g while Roh et al. achieved near 49 mg/g of carotenoids from
Undaria sp., with a co-solvent. The biggest drawback is for mass production, because SFE
is considered expensive due to high equipment costs and energy consumption, so further
research is essential to uphold its scale-up feasibility [28,60].

3.2.5. Pressurized Solvent Extraction

Pressurized solvent extraction (PSE) (or subcritical water extraction (SWE) when water
is the solvent considered), uses temperature and pressure in a range of 50–300 ◦C and
35–200 bar, respectively. The solvent is heated above its normal pressure and temperature
boiling point and below the critical temperature and pressure, remaining in the liquid state.
Moreover, some solvent properties such as density, viscosity and surface tension decrease
with increasing temperature, enhancing mass transfer and extraction yields with shorter
extraction times [28,60,63]. Water is the most used solvent because it does not generate
toxic waste, but other solvents can be used [60,63]. Water also has a peculiar behavior: the
dielectric constant is decreased with temperature, increasing the affinity towards less polar
compounds. The combined high temperature and pressure allows an increase of target
compounds desorption from the material, solvents solubility and diffusion into materi-
als, leading to an overall increase extraction kinetics. PSE has therefore several benefits
such as high extraction efficiency, less solvent consumption, short extraction time and
non-hazardous (for subcritical water) [28,60]. If needed, the extraction of labile compounds
has to be carefully designed to be as short as possible, since they could degrade with high
temperature and pressure. Though the potential is high, the literature showing seaweed
extractions using PSE is scarce. The compounds extracted include phenolics, polysaccha-
rides (fucoidans, alginates, agar) and amino acids with potential application in the food,
pharmaceutical and cosmetic industries [28,60]. Saravana et al. [75] has used SWE to extract
fucoidans from Saccharina japonica with a yield of 13%. SWE applied by Trigueros [82]
on protein fractions of Gelidium sesquipedale residues showed to be efficient and the work
highlighted that the non-polar selectivity is directly proportional to the severity factors
of the extraction method. Furthermore, Gomes et al. [87] were able to extract different
polysaccharide fractions from red seaweeds with different functionalities depending on
the severity factor applied. Medium severity factors allowed to extract structural polysac-
charides (agar), without impairing its gelling ability, while harsher severities hydrolyzed
the polysaccharides available into oligosaccharides (eventually with prebiotic activity) or
monosaccharides that could be used as substrate to fermentative processes.

The scaled-up equipment and maintenance costs are high due to the need for high
operating temperature and pressure and the corresponding safety precautions [60].

3.2.6. Electro-Technologies

Extractions using electric effects can be advantageous, bringing new prospects to the
processing industry, due to synergistic effects of temperature and electric fields. Pulsed
electric field (PEF) and ohmic heating (OH) are examples of promising and attractive
electro-technologies extractions [88].

PEF is an eco-friendly technology that enhance cell membranes permeability, due to
the occurrence of electroporation caused by the application of very short pulses of very
high voltage electric fields. This technology has a wide range of target applications such as
microalgae, bacteria, plant tissues, seaweeds, etc., and is currently used to induce stress, to
extract several compounds (i.e., proteins, carbohydrates, etc.). In addition to this versatility,
PEF treatment has high efficiency, requires low energy and water consumption, does not
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need chemicals, generates low heat, and is suitable for industry application [62,88]. In spite
of that, disadvantages include electrodes oxidation, erosion, fouling and bubbling, difficult
and complex temperature control and high costs of power generator [88]. Similarly, to
other technologies, PEF application in seaweeds has been scarcely reported. However,
some authors believe that PEF has a good potential in integrated seaweed biorefinery
approaches, particularly as a pretreatment to disrupt biomass and facilitate extraction
using other complementary technologies [62]. Postma et al. [84] studied PEF on the release
of water-soluble carbohydrates and proteins from Ulva lactuca and obtained the yields of
<15% and 15%, respectively and Robin et al. [85] showed a 20% of protein yield from the
same seaweed.

OH applies moderate electric field (MEF) to heat a sample. It is a green technology
that provides a uniform, fast and precise heating, with high efficiency in energy transfer.
This homogeneous and instantaneous transmission of thermal energy and the fast heating
rate allow high temperature application in very short periods and enhance cell membrane
permeability, providing high quality products where the compounds can be preserved,
comparing to conventional extractions [88–90]. The heat is generated according to Joule’s
law, where the electrodes are in contact with the materials to be heated (e.g., mixture
seaweed/solvent), which work as an electric resistance, and an electric current passes
through it. This green technology has some parameters dependence, such as a frequency
range of 50 to 25.000 Hz, temperature, electric field intensity between 1 and 1000 V/cm
which defines the designation of moderate electric field, treatment duration, type and
electrical conductivity of material (range of 0.01 to 10 S/m). The main drawbacks of
this green process are similar to PEF, because working at low frequencies may induce
electrolysis, electrode erosion and leakage of metals to the medium [88–90]. Besides
the thermal effects, other non-thermal effects have been described, including membrane
permeabilization (electroporation of cellular tissues), causing membrane damage and
solutes diffusion, and thus facilitating the extraction of bioactive compounds (i.e., phenolics,
fatty acids, pigments, etc.) [88–90]. Other described advantages of OH include scale-
up easiness, color pigments maintenance, lower decrease in the nutritional value, short
extraction times, and high yields. Howsoever, the application of OH method in seaweeds
is also scarce.

4. Integral Use of Different Seaweed Fractions towards Zero Waste

Nowadays, the global biorefinery concept is widely spread and transversally used in
the terrestrial biomass exploitation, though it has very low representativeness in seaweed-
based industrial processes. As previously said, seaweeds are a rich source of nutritional
elements, such as polysaccharides (e.g., agar, carrageenan, alginate, etc.), proteins, lipids, vi-
tamins, polyphenols, pigments and minerals (e.g., potassium, calcium, iron, etc.), which are
widely used in food, feed, cosmetic, energy and pharmaceutical industries. Due to their fast
growth rate, photosynthetic efficiency, unique compounds, cultivation in saltwater without
fertilization, no competition for agricultural land and biomass production, seaweeds are
an interesting sustainable feedstock for biorefinery, with economic and environmental ad-
vantages, since their wastes generated from biomass processing, still have some biological
value. Algae are defined as the 3rd generation feedstock for biofuels production, with zero
or low lignin content, not competing with food and feed, with potential to partly replace
terrestrial biomass [91,92].

In fact, the interest in seaweed biorefinery started with the idea of solving economic
and environmental drawbacks from terrestrial biomass biorefinery. Seaweed biorefinery
allows less residues production, resulting in a close to zero waste system, which increments
the value of waste fractions, promoting a circular economy approach based on recyclable
and reusable wastes. Not only this strategy benefits an increase in resource efficiency, but
also, flexibility and diversity, acting on many fields of study and production [91,93,94].
Moreover, the use in biorefineries of seaweed species that cause eutrophication could
prevent negative ecological impacts and provide sustainability of coastal environments,
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and higher social and economic benefits [84,93]. Nevertheless, the financial viability of
the seaweed-based biorefineries will determine their commercial success. However, the
economic data associated with seaweed based biorefineries is limited, as well as knowledge
on the environmental footprint and life cycle assessment, sustainability and scale-up
feasibility [28].

The sustainability of seaweed biomass is managed from production, harvesting, pro-
cessing, packaging, transport and storage. An economically feasible multistage cascading
process has an extraction priority based on the seaweed products value: the compounds
with highest value should be extracted first, such as bioactive or functional compounds,
while compounds considered with lowest value should be extracted after, such as sugars
and minerals. However, the order may be changed depending on other factors. For in-
stance, prior extraction of some fractions may also reduce processing problems (e.g., high
viscosity) in the extraction of other fractions as well as improving their final quality, due to
the removal of possible contaminants or anti-nutrients. Another criterion may be based
in mass and energy balances. For instance, if a big fraction may be previously removed
without jeopardizing the functionality of the other fractions, it will substantially reduce the
volume of biomass to be further processed, with important advantages in overall biorefin-
ery process. For each recovered fraction, it is still essential to perform several sequential
steps such as dewatering, concentration and purification. After each step, the waste and
leftovers generated are used as raw material for other production processes in a cascading
approach, and the leftovers that cannot be used due to their low quality biomass are used
for energy production [91].

Seaweeds compounds such as proteins, phenolics, fatty acids and minerals are com-
pounds of interest and preferred for use in a cascade biorefinery due to their variable and
high-value applications. Red seaweeds are considered an excellent raw materials to be
used in cascade biorefinery [93]. The leftovers, with low value, can be converted to energy
(e.g., bioethanol, biogas, biohydrogen, methane, biofuel) or used in other fermentative
processes [28,91,93,95]. The final seaweed waste can be further used for different purposes
(feed, agricultural and composting). Overall, the efficient use of seaweed biomass is impor-
tant for the marine environment preservation and organic substances recycling, supporting
the circular economy and zero waste concepts [91,95], while reducing the cost of processes.
The applications of these sequentially recovered fractions from seaweed biorefineries are
similar to those of the individually recovered described in the above sections, including
their use as fuels, food ingredients, cosmetics, nutraceuticals, therapeutics and biofertilizers.
These products can be readily used in the market or can be used as ingredients or raw ma-
terials in other industrial processes to obtain value-added products [94]. A possible general
scheme of an integral utilization of different seaweed fractions is proposed in Figure 1.
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Figure 1. Scheme of seaweed biorefinery approach [87,91–100].

Biorefinery operates with several sequential processing steps into a single facility,
using integral seaweed biomass and fractionating it, producing different products with
high value and reducing waste and nutrients loss. A wide range of combinations between
processes and technologies (including all the above referred) is available and a careful de-
sign of the biorefinery must be made, to allow the efficient recovery of all worthy fractions,
causing the least environmental impact, while maintaining the bioactive and functional
properties of extracts [28,91,93–96]. Moreover, a comprehensive biorefinery design must
have as primary objective to reach global sustainability by evaluating and optimizing
economic, environmental, and social aspects. In this context the use of green extraction
technologies, such as MAE, UAE, EAE, SFE, PSE, PEF and OH, is a part of the holistic
approach for the biorefinery design. The combination of these methods or choosing some
of them as a pretreatment can lead to higher yields of extraction, since the conventional
methods do not have the same efficiency when used individually [97]. For instance, PEF
has been used as a pre-treatment in the recovery of phycobiliproteins, to disrupt the sea-
weed structure facilitating water extraction [101]. Considering the biorefinery described as
an example in Figure 1, as the functionality of these compounds (e.g., coloring ability) is
highly susceptible to heat, PEF is an appropriate non-thermal extraction technology for
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this first biorefinery step. It is expected that this pretreatment will also facilitates subse-
quent extraction steps. The color removal (both phycobilliproteins and ethanol soluble
pigments) prior to the carbohydrates will allow to valorize these fractions (without thermal
degradation) while bleaching and facilitating the subsequent steps. Thermal extraction of
carbohydrates can be made either by OH or by PSE with water as solvent [87], allowing
energetic advantages and/or tuning for the desired carbohydrate product. Further protein
recovery can be made through chemical processes, but also using EAE with proteases
and finally the residual biomass can be converted to a glucose rich fraction to be used
as fermentation substrate by autohydrolysis (that can be viewed as a particular case of
sub-critical water extraction), using high severity factors.

5. Food Applications

Raw seaweeds have been consumed worldwide by coastal communities since the
beginning of human civilization [26]. They may be eaten in many forms: similar to vegeta-
bles, fresh, dried, in flakes, flour or powder, or incorporated in other food products [14,102].
They can be used as a flavoring and seasoning agent, as a condiment, as a snack, as a
side-dish or as a whole dish [103]. Their pigments, like carotenoids, phycobiliproteins and
chlorophylls, represent a natural source of colorants for the food industry [14]. The first
factories of seaweed ingredients appear in 19th century, producing iodine, alginates and
carraginates [104]. With the growth on large-scale of food production in the 20th century,
there was a widespread use of seaweeds in the industry. In addition, at the period of 1st
World War, the seaweeds compounds became to be used for the production of fertiliz-
ers, such as potash [9]. The high added-value compounds of seaweeds can be used in
bakery, dairy, fish, meat or vegetable-based products allowing nutritional fortification, or
the development of new food products with different textures and/or with functional
properties [10]. Moreover, seaweeds can be consumed as a substitute of many products,
labeled as “fat-free”, “gluten-free”, “mineral rich”, “low sugar”, and “low calories”, or
as healthier substitutes of pasta or bacon (Himanthalia elongata, as spaghetti, and Palmaria
palmata, as sea bacon). Seaweeds are ingredients in other recipes such as wraps or in
desserts like in innovative Spanish nougats with crushed nori seaweed [14,105]. Moreover,
the umami taste of edible seaweeds, can contribute to produce meals with reduced salt,
sugar and fat contents, which is of a great importance for a healthy diet [38].

5.1. Technological and Nutritional Applications

The seaweeds’ abilities of gelling, thickening and stabilizing are conferred by the hy-
drocolloids (as agar, alginate, and carrageenan) and have led their extraction and recovery,
to be used as texturizing and stabilizing ingredients in the food industry in products like
steaks, sausages, pasta, bread, biscuits, smoke cheese, yoghurt or milk deserts, to improve
not only their nutritional value, but also their sensory properties [105]. Lately, these unique
characteristics have been explored in the innovative industry of molecular gastronomy,
creating the famous spheres of gel with flavored liquid inside, helping talented cuisine
chefs to achieve the desirable Michelin stars [103].

The first hydrocolloid with European registration, agar, is known as “vegetable
gelatin”. It is present in red seaweeds, mainly in Gracilaria and Gelidium species, and
is usually employed in the production of jellies and fruit candies, forming a rigid gel
in water at room temperature, making it a high value product for food application [10].
Seaweeds such as Laminaria japonica have been used to maintain the product quality for a
longer storage period and Fucus vesiculosus, as a source of phlorotannins and antioxidant
compounds, has found application to prevent food spoilage resultant from oxidative de-
terioration [106,107]. The alginate extracted from brown seaweeds, such as Macrocystis,
Ascophyllum and Laminaria, has been applied for the elaboration of energetic bars, salad
dressings, in the preparation of syrups as thickeners and/or emulsifiers, or even to produce
ice cream, to avoid the formation of large amounts of ice, and confer a creamy and smooth
texture [9]. The sulphated polysaccharides extracted from green seaweeds, the ulvans, have
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also potential gelling and thickening properties, acting similarly to gum Arabic. Besides
that, like agar, ulvans may be used as a vegan alternative for gelatin [26].

Several seaweeds rich in proteins have been used in processing and preparing seafoods,
and presenting benefits over traditional high-protein crop in terms of productivity and
nutritional value [108]. Some red seaweeds, such as Porphyra tenera, Porphyra yezoensis
or Palmaria palmata, can be highlighted for having a protein content higher than certain
legumes such as soybean. Another application for their proteins is as coloring agents
potentially useful for food industry, such as the red colored proteins, like phycoerythrin,
from red seaweeds. As seaweeds are considered a good protein source for human nutrition,
it is possible to use seaweeds as an alternative of animal protein for the processing of foods
for athletes that need high consumption of this macronutrient [109].

5.2. Functional Foods

The last decades trend of healthy food improved the consumption of seaweeds in
Western diets, which was traditionally restricted to Asian and coastal communities [57].
Further the increased interest in health benefits of whole seaweeds led to the elaboration of
seaweed-based food products with functional foods claims and promoted the potential
application of their bioactive compounds, turning them into lucrative ingredients for
industry [110]. Some oligo and polysaccharides extracted from seaweeds are resistant to
the digestion process in the upper gastrointestinal tract, presenting potential to be used as
prebiotics. This has been confirmed by submitting these compounds to fermentation by
fecal microbiota [111]. For instance, besides the technological function already mentioned,
carrageenans extracted from Kappaphycus alvarezii can act as dietary fiber, clearing the
digestive system, protecting the stomach surface membrane and preventing the effects of
potential carcinogens on the intestine [112]. One of the most cultivated and commercialized
species is Porphyra sp., known for their nutritional value with high protein content and
a rich amino acid profile with potential to produce cardioprotective effects, antidiabetic,
anti-inflammatory and antioxidant properties [113]. Another beneficial effect of seaweed
consumption is as a replacer for salt, reducing the risk of chronic diseases provoked by
western high NaCl diets, also increasing the consumption of other elements such as calcium,
potassium and iodine, usually found in levels below those recommended [107]. The
replacement for 1% of seaweeds as Undaria pinnatifida, Porphyra umbilicalis, Palmaria palmata
or Himanthalia elongata helped to reduce the salt content up to 50% in frankfurters [114].
Similar results were found replacing the salt in the elaboration of cooked ham, without
affecting the yield, texture, color or sensorial acceptance of the reformulated product [115].

6. Conclusions

The nutritional and functional profiles of seaweeds are remarkable and their com-
pounds have potential use in a wide diversity of sectors, including the food, pharmaceutical,
cosmetics, agriculture and energetic industries.

However, currently this potential is not appropriately explored by the seaweed indus-
try. Extraction processes and conditions to be used have to be thought in a case-by-case
approach, considering both the type of seaweed and fractions to be recovered. How-
ever, a wide range of possible sustainable technologies and approaches are available to
allow effective recovery of different compounds from different biomasses while keeping
interesting functional properties. Sustainable practices and zero waste approaches re-
covering all valuable seaweed compounds in a cascade process are important means to
increase seaweed-based industries economic feasibility, with a zero waste generation and
reduced environmental impact in line with UN Sustainable Development Goals. These
approaches have to be designed holistically, in order to get the highest possible value of
the seaweeds’ biomass.

Nevertheless, knowledge regarding seaweed biorefineries is still scarce. Research
on alternative extraction technologies, environmental footprint, stocks availability, and
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scale-up, will be useful to demonstrate the potential and to boost seaweeds application at a
commercial scale.
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