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ABSTRACT 
 

Heavy metals and organic pollutants are introduced into the aquatic 

ecosystems as a result of human activities involving agricultural uses, 

industrial discharges, domestic effluents and agricultural runoff. These 

contaminants such as herbicides, pesticides, nitrogen and phosphate 

fertilizers, heavy metals... etc., have negative impacts on both the stability 

of the natural aquatic environment (intensification of eutrophication, 

contamination and disappearance of certain animal and plant species...) 

and can cause adverse effects on human health. Recently there has been 

an increasing interest in using seaweeds for water quality assessment and 

for removal of heavy metals and organic pollutants. In this review, we 

will discuss the use of macroalgae as bioindicators for monitoring and 

protecting aquatic environments and different mechanisms used by these 

seaweeds for metal accumulation and detoxification. 
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1. INTRODUCTION 
 

The accumulation of organic pollutants (pesticides, PCBs, DDT…) and 

heavy metals (Cd, Pb, Se, As…) in the aquatic systems can cause serious 

problems on environment and organisms affecting negatively the stability of 

many aquatic ecosystems and can also cause difficulties for animals and 

human health [1]. Although some metals are necessary for biological 

processes, all of them are toxic at high concentrations. This is due to their 

oxidative capacity to form free radicals and their ability to replace essential 

metals in enzymes, interrupting their normal activity [2]. Other metals are not 

essential and accumulate in different organisms and because of this they are 

toxic even at low concentrations. Mercury, chromium, lead, arsenic, copper, 

cadmium, cobalt, zinc, nickel, beryllium, manganese and tin are the most toxic 

heavy metals according to the United States Environmental Protection Agency 

(EPA) [3]. Many aquatic ecosystems have been subjected to industrial waste 

discharge. Domestic and agricultural pollution generating both organic and 

inorganic contamination, such as pesticides and heavy metals, are leading to 

widespread contamination of both surface and groundwater by runoff. Metals 

are introduced into the aquatic ecosystems as a result of weathering of soil and 

rocks, from volcanic eruptions and from a variety of human activities 

involving mining, processing and use of metals and/or substances containing 

metal contaminants [4]. These heavy metals may also be derived from 

remobilization from natural soils due to the changes in local redox conditions 

and the corrosion of subsurface engineering structures due to prolonged 

submergence under acidic groundwater [5]. Studying the bioavailability and 

origin of heavy metals from the Nador lagoon sediments, González et al. [6] 

found that the most important trace-element anomalies (As, Cd, Co, Cu, Mn, 

Pb, Zn) were found, mainly around industry and old mining activities. 

Industrial activity has led to very high heavy metal concentrations on the 

environment, which are in general 100–1000 fold higher than those in the 

Earth’s crust, and locally, living organisms can be exposed to even higher 

levels [7]. In a river polluted by base-metal mining, cadmium was the most 

mobile and potentially bioavailable metal and was primarily scavenged by 

non-detrital carbonate minerals, organic matter, and iron-manganese oxide 

minerals [8]. Although mercury is a naturally occurring element and it was 

always present in the environment, global human activity has led to a 

significant increase of mercury released into the atmosphere, aquatic 

environment and land [9]. Wang et al. [10] suggested that the most important 

anthropogenic sources of mercury pollution in aquatic environment are 
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atmospheric deposition, urban discharges, agricultural material runoff, mining, 

fossil fuel use and industrial discharges, burning of coal, and pharmaceutical 

production [10]. In order to control heavy metal levels before they are released 

into the environment, the treatment of the contaminated wastewaters is of great 

importance since heavy metal ions accumulate in living species with a 

permanent toxic and carcinogenic effect [11, 12]. The most common treatment 

processes used include chemical precipitation, oxidation/reduction, ion 

exchange, membrane technologies, especially reverse osmosis, and solvent 

extraction. Each process presents advantages, disadvantages and ranges of 

applications depending on the metal ion, initial concentration, flow rate or raw 

water quality [13]. Martínez-Jerónimo et al. [14] suggested that chemical 

contaminants present in the aquatic ecosystem may be immobilized and 

accumulated in sediments or may be subject to transformation and activation 

processes [14]. Depending on biogeochemical processes, many organic 

pollutants like hydrocarbons are involved in adsorption, desorption and 

transformation processes and can be made available to benthic organisms as 

well as organisms in the water column through the sediment–water interface 

[15]. 

Physicochemical processes, conventionally used for metal removal, often 

have high operating costs, generate large amounts of sludge which require a 

proper disposal, or are ineffective when aim is to achieve very low residual 

levels [3, 16]. 

Relatively recently, there has been increasing interest on the use of 

bioremediation as the most desirable technology which uses seaweeds and 

other organisms for removal of environmental pollutants or detoxification to 

make them harmless [1, 17, 18]. Seaweeds can eliminate heavy metals by two 

processes: bioaccumulation and biosorption. Biosorption is a term that 

describes the removal of heavy metals by the passive binding to non-living 

biomass from an aqueous solution; however, the bioaccumulation describes  

an active process whereby removal of metals requires the metabolic activity  

of a living [19]. Investigation on organic xenobiotics bioaccumulation/ 

biodegradation in green algae is of great importance from environmental point 

of view because widespread distribution of these compounds in agricultural 

areas has become one of the major problems in aquatic ecosystem [20]. Some 

algae and microorganisms have developed various strategies for their survival 

in heavy metal-polluted habitats, these organisms are known to develop and 

adopt different detoxifying mechanisms such as biosorption, bioaccumulation, 

biotransformation and biomineralization, which can be exploited for 

bioremediation either ex situ or in situ [21-24]. Biosorption may be simply 
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defined as the removal of substances from solution by biological material. 

Such substances can be organic and inorganic, and in soluble or insoluble 

forms [25]. Biosorption is a physico-chemical process and includes such 

mechanisms as absorption, adsorption, ion exchange, surface complexation 

and precipitation. 

This chapter will highlight our current understanding on the involvement 

of seaweed in bioremediation of heavy metals and different strategies used by 

these species for metal accumulation and detoxification. 

 

 

2. MECHANISMS OF METAL ACCUMULATION  

AND DETOXIFICATION 
 

2.1. Cell Wall Adsorption 
 

There are several chemical groups that could contribute to the metals 

acquisition by biomass: acetamido groups of chitin, structural polysaccharides 

of fungi, amino and phosphate groups in nucleic acids, amino, amido, 

sulfhydryl, and carboxyl groups in proteins, hydroxyls in polysaccharides, and 

mainly carboxyls and sulfates in the polysaccharides of marine algae that 

belong to divisions Phaeophyta, Rhodophyta, and Chlorophyta [26]. 

Algae have been used extensively as biosorbent material more than other 

kinds of biomass [27, 28]. Their ability focused on the composition of cell 

wall which includes molecules such as chitin, polysaccharides, proteins and 

lipids. These molecules have different groups such as phenolic, hydroxyl and 

carboxyl, which can form complexes with heavy metals. Previously, Wang et 

al. [29] suggested that polysaccharides such as cellulose, chitin, and alginates 

that are constituents of cell walls of fungi and algae participate in capturing 

metals. Stary and Kratzer [30] reported that the algae cell wall behaves like a 

weak acidic cation exchanger containing various cell wall ligands with 

different exchange capacities. 

The cell walls of seaweeds (Phaeophyta, Rhodophyta and many 

Chlorophyta) are composed of at least two different layers (Figure 1). The 

innermost layer consists of a microfibrillar skeleton that imparts rigidity to the 

wall [19]. The outer layer is an amorphous embedding matrix [32, 33]. Takeda 

and Hirokawa [34] demonstrated that the cell wall of the green algae Chlorella 

ellipsoidea was composed of two major constituents: alkali-soluble 

hemicellulose and alkali insoluble rigid wall. The former was composed of 
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neutral sugars, rhanmose, xylose, arabinose, mannose and glucose, and the 

letter had glucosamine as a main constituent.  

 

 

Figure 1. Cell wall structure in the brown algae [31]. 

The most common fibrillar skeleton material is cellulose which imparts 

rigidity to the cell wall [35]. It can be replaced by xylan in the Chlorophyta 

and Rhodophyta in addition to the mannan in the chlorophyta [19]. Besides 

cellulose, red and green algae contain, respectively, agar and carragenates, rich 

in sulfated polysaccharides, and glycoproteins, which comprise amino, 

carboxyl, sulfate and hydroxyl groups [36]. 

Lahaye and Robic [37] reported that among the polymers synthesized by 

the green seaweed Ulva and Enteromorpha cell wall polysaccharides represent 

around 38-54% of the dry algal matter. These include four polysaccharide 

families in Ulva sp.: two major ones, the water-soluble ulvan and insoluble 

cellulose, and two minor ones, a peculiar alkali-soluble linear xyloglucan and 

a glucuronan (Figure 2). The carboxylic and sulphate groups of these 

polysaccharids have been identified as the main metals equestering functional 

ionic groups in marine algal cell wall [38]. 

Davis et al. [19] suggested that the phaeophyta algal embedding matrix is 

predominately alginic acid, with smaller amounts of the sulphated 

polysaccharide fucoidan, while the Rhodophyta contain a number of sulphated 

galactan (e.g., agar, carrageenan, porphyran, etc.). Both the Pheaophyta and 

Rhodophyta contain the largest amount of amorphous embedding matrix 

polysaccharides making them potentially excellent materials for heavy metal 

binding. 
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Figure 2. Distribution of the different Ulva sp. cell wall polysaccharides in a schematic 

cross section of a thallus (A) and proposed associations between the different cell wall 

polysaccharides (B) [37]. 

Poly-anionic polysaccharides of the red seaweed, associated with the cell 

walls and intercellular spaces, sequester cations through an ion exchange 

mechanism, thus partially preventing entry of metal ions into cells [39-41]. 

The brown algae have proven to be the most effective and promising 

substrates for the adsorption of heavy metals. The properties of cell wall 

constituents, such as alginate and fucoidan, are chiefly responsible for heavy 

metal chelation [19]. Carboxyl and sulfate are the predominant functional 

groups in brown algae cell walls, which are mainly composed by cellulose, 

alginic acid and sulfated polysaccharides [36]. 

 

 

2.2. Vacuolar Compartmentation 
 

The vacuole is a suitable storage reservoir for excessively accumulated 

heavy metals [42]. Recently, Seth et al. [43] reported that translocation and 
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storage of metals into vacuoles are an important phenomenon found in non-

accumulators where it is an efficient defence strategy against elevated metal 

concentrations.  

Suresh and Ravishankar [44] reported that algae have the ability to 

hyperaccumulate various heavy metals by the action of phytochelatins and 

metallothioneins forming complexes with heavy metals and translocate them 

into vacuoles. Hall [45] suggested that the efflux of ions at the plasma 

membrane or transport into the vacuole by tonoplast-located transporters are 

the two ways of reducing levels of toxic metals in the cytosol and so are 

potentially important mechanisms for heavy metal tolerance. The objective of 

this compartmentation is to remove the metals from the cytosol or other 

cellular compartments where sensitive metabolic activity takes place [46-48]. 

Therefore, the central vacuole seems to be a suitable storage reservoir for 

excessively accumulated heavy metals [42]. Volland et al. [49] reported that 

Al2(SO4)3 treatment resulted in an increase of the number of vacuoles as a 

mechanism for the accumulation and retention of heavy metals. 

Cobbett and Goldsbrough [50] showed that the potential toxicity of 

accumulated metals can be decreased as a result of the formation and 

subsequent sequestration of “metal-phytochelatin complexes” in vacuoles via 

transport across the tonoplast. Similarly, Heuillet et al. [51] suggested that the 

metal–metallothionein complex ends up in the vacuole of the cell. This was 

observed in the microalga Dunaliella bioculata. The compartmentalization of 

Zn in vacuoles seems to be a general crucial detoxification mechanism for 

cells [52, 53]. In Cardaminopsis halleri, a heavy-metal-tolerant plant, the 

vacuole is the main depot for Zn, where it is stored as zinc silicate [54]. 

Increased uptake of metals has been achieved in several examples using 

transporters located in the tonoplast that sequester metals into the vacuole [55-

57]. 

Kakinuma et al. [58] reported that the accumulation of most of the metal 

ions is driven by the electrochemical potential by electrogenic proton influxes 

via the vacuolar H+-ATPase. Cd is transported across the tonoplast by a 

Cd2+/H+ antiport mechanism [59]. Rahman and Hassler [60] showed that the 

Phytochelatins build a complex with arsenite (As(III)–PC) and are sequestered 

into vacuoles through the activity of ATP binding cassette (ABC) transporters, 

being finally excreted from the cells. Song et al. [61] suggested that essential 

metal ions, such as Zn(II), Cu(II), and Mn(II), can be transported into vacuoles 

as forms of “PC2-metal complexes” through the putative ABC transporter(s). 
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2.3. Intracellular Sequestration  
 

To maintain low concentrations of free metals in cytoplasm, plants have 

developed the competitive mechanism for chelation between heavy metals and 

low-molecular-weight (LMW) compounds [43]. LMW molecules are either 

thiol-containing compounds (metallothioneins: MTs, GSH, PCs) or not (e.g., 

histidine, nicotianamine, etc.).  

Heavy metals are intracellularly chelated through the synthesis of amino 

acids, organic acids, glutathione (GSH), or heavy metal-binding ligands such 

as metallothioneins (MTs), phytochelatins (PCs) [42]. 

 

2.3.1. Chelation by Glutathione 

Recent research studies provided experimental evidence that a strong 

antioxidant system, including high glutathione (GSH) levels, is present in 

different hyper-accumulators and that it is either needed or at least a beneficial 

trait in metal tolerance [62]. Glutathione (GSH), a nonenzymatic antioxidant, 

is a low molecular weight thiol implicated in a wide range of metabolic 

processes and constitutes an important plant defense system against 

environmental stresses, including HMs [42, 63]. Seth et al. [43] reported that 

GSH plays a crucial role, as it is not only important in metal chelation, but also 

in antioxidative defence and redox signalling, as well as in plant growth and 

development. Glutathione is a precursor for PCs synthesis, is also involved in 

the detoxification of toxic oxygen species [64], and is generated in response to 

pesticides [65]. GSH removes metals directly through chelation which 

processis catalyzed by the glutathione S-transferase [66]. Hossain et al. [42] 

suggested that GSH protects proteins against denaturation caused by the 

oxidation of protein thiol groups under stress and plays an indirect role in 

protecting membranes by maintaining α-tocopherol and zeaxanthin in the 

reduced state. Ahner et al. [67] reported that GSH has other functions, 

including the formation of phytochelatins, which have an affinity for heavy 

metals and are transported as complexes into the vacuole, thus allowing plants 

to have some level of resistance to heavy metals. Transgenic plants expressing 

glutathione (GSH) offer great promise for enhancing the efficiency of Cd 

phytoextraction from polluted soils and wastewater. These plants may also 

show increased tolerance to, and accumulation of, other heavy metals, because 

PCs are thought to play a role in tolerance of a range of heavy metals, 

especially nonessential heavy metals such as mercury and lead [1]. 

Torricelli et al. [68] analysed the GSH levels in wild type and chromium-

tolerant strains of Scenedesmus acutus. The authors found that tolerant strain 
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showed higher levels of reduced glutathione when the cells were exposed to 

Cd2+. 

In the green seaweeds there was an increase in the concentration of GSH 

with time of exposure to Cd (approximately two-fold higher in Ulva lactuca 

than in Codium fragile) when compared to controls [69]. However, in the red 

seaweed Gracilaria gracilis the concentration of GSH did not change. This is 

probably a consequence of lower intracellular accumulation of Cd by red than 

brown seaweeds, as previously reported for Gracilaria tenuistipitata and 

Sargassum thunbergii [70]. A reduction in the concentration of GSH with 

increased production of PCs was also evident when Fucus serratus was 

exposed to Zn, but the decrease was apparent after only 4 days [69]. 

Agrawal et al. [71] analysed the effect of different Hg treatments on 

glutathione content in a green algae Chlorogonium eleongatum (Dang) and 

they found that Mercury treatments increased the concentration of total 

glutathione, including both oxidized (GSSG) and reduced (GSH) Glutathione. 

The two brown seaweeds Fucus serratus and Fucus vesculosus, living in an 

environment with high concentrations of metals, maintained high 

concentrations of GSH despite synthesis of PCs, although the proportions of 

GSH to PCs differed between the two species; Fucus vesiculosus had a higher 

proportion of GSH [69]. Wu and Lee [72] showed that total GSH level did not 

change in Ulva fasciata exposed to increasing concentrations of copper, but 

GSH level increased in Ulva lactuca exposed to cadmium excess [73]. Thus, 

ulvophytes showed different antioxidant responses to heavy metals and, until 

now, Ulva compressa is the only ulvophyte showing GSH synthesis in 

response to copper excess [74]. 

 

2.3.2. Chelation by Phyochelatins 

Phytochelatins (PCs), small sulphur-rich oligopeptides of the general 

structure (Glu-Cys)n-Gly, n = 2–11 and synthesized from reduced glutathione 

(GSH), are involved in homeostasis and detoxification of metals in the cells of 

higher plants, eukaryotic microalgae, some fungi. PCs are synthesized from 

GSH; the metal binds to the constitutively expressed enzyme 𝛾 -

glutamylcysteinyl dipeptidyl transpeptidase (PC synthase), thereby activating 

it to catalyze the conversion of GSH to phytochelatin [75]. 

Algal species can respond to heavy metal exposure by synthesizing metal 

binding proteins known as phytochelatins [76]. Gekeler et al. [77] 

demonstrated that algae sequester heavy metals by an identical mechanism as 

higher plants, namely via complexation to phytochelatins. The two standard 

characteristics attributed to the PCs are that (1) PC synthesis can be stimulated 
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in cells exposed to various metal ions such as Cd, Cu, Hg, Ni, Zn, Pb and Ag 

and (2) the formed PCs are capable of binding to multiple types of metals and 

metalloids [78, 79]. After the activation of PC synthase by the HM ions and 

HM chelation by the PCs synthesized, the HM ion complex is transported to 

the vacuole and stabilized there by forming a complex with sulfides or organic 

acid [80]. 

Some seaweeds show a high capacity for accumulation of heavy metals as 

results of tolerance mechanisms and many algae synthesize phytochelatins 

(PCs) that can form complexes with heavy metals and translocate them into 

vacuoles [44]. Pawlik-Skowrońska et al. [69] showed that seaweeds differ in 

their capacity to produce PCs, even when growing under the same 

environmental conditions and levels of pollution and the production of PC 

depends on factors such as morphology, biochemical composition (e.g., 

polysaccharides), intracellular metal accumulation and the status of the 

precursor for PC production. 

Mellado et al. [74] reported that copper induced the synthesis of ascorbate, 

glutathione and PCs in Ulva compressa suggesting that these compounds are 

involved in copper tolerance. The total concentration of PCs measured in 

Fucus spp. and S. chordalis were positively correlated with the levels of metal 

contamination at the sites sampled and with the total concentrations of metals 

in the seaweeds [69]. Yadav [81] reported that PCs are synthesized inductively 

by exposure to not only Cd, but also by other heavy metals such as Hg, Cu, 

Zn, Pb and Ni. During the exposure of plants to such metals, PCs are 

synthesized from GSH by phytochelatin synthase (PCS) activity. Thus, marine 

macroalgae differ in their abilities to synthesize PCs in response to heavy 

metals and, in particular, Ulva compressa is the only ulvophyte showing 

synthesis of PCs in response to copper excess. 

PCs ensure the homeostasis of Cu and Zn by transferring them to the 

apoenzymes in the necessary amount. The remaining amount of these metals 

are transferred to the vacuoles [75]. Recently, Roncarati et al. [82] studied the 

intra-specific responses to Cu-stress in two strains of the brown alga 

Ectocarpus siliculosus (Es524 and LIA), and they found that the higher intra-

cellular concentrations of Cu, lower production of PCs, and lower expression 

of enzymes involved in GSH-PCs synthesis may be contributing to an induced 

oxidative stress condition in LIA, which explains, at least in part, the observed 

sensitivity of LIA to Cu. In Es524, there was an increase in the transcripts of 

γ-GCS, GS and PCS, particularly under high Cu exposure. Ahner et al. [67] 

reported that the two marine algae, Thalassiosira weissflogii and Thalassiosira 

pseudonana, produce phytochelatins in great amounts due to the higher 
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activity of phytochelatin synthase, which has greater affinity for the 

glutathione substrate or metal ions. Increased production of PCs was also 

evident in the red seaweed, G. gracilis, upon exposure to Cd. Given that 

concentrations of PCs vary with intracellular concentrations of metals [83, 84], 

the data from the field and experimental studies suggest that the concentrations 

of PCs in seaweeds are mechanistically linked to uptake of metals and that 

they reflect the bioavailability of metals. 

 

2.3.3. Chelation by Metallothioneins 

Metallothioneins (MTs) are low molecular mass cysteine-rich proteins that 

can bind heavy metals such as Cd, Zn and Cu in thiol groups [85, 86] and can 

participate in the homeostasis of intracellular metal ions [87]. Since their 

discovery as Cd-binding proteins present in horse kidney, MT proteins and 

genes have been found throughout the animal and plant kingdoms as well as in 

the prokaryote Synechococcus and seaweeds [50, 88]. Ahn et al. [89] reported 

that plant MTs are thought to be primarily involved in cellular ion 

homeostasis. While it is likely that plant PCs and MTs both participate in 

heavy metal detoxification, their distinctive roles have not been clearly 

demonstrated. In the absence of MTs, or another ligand, free copper ions 

would precipitate a cascade of oxidative damage and disrupt the controlled 

senescence program [50]. Metal coordination takes place through the large 

number of cysteine sulfurs present in the protein forming two metal-binding 

domains in mammalian, crustacean, plant, and algal MTs [88-92]. Castiglione 

et al. [93] reported that besides detoxification, MTs may also take part in the 

regulation of gene expression and cell metabolism, by donating/accepting 

metal ions (e.g., Zn) to/from metal-dependent DNA-binding proteins or 

metalloenzymes [93]. The peptide is synthesized by some seaweed, which 

chelates metals and stores them in compartments within cell or segregates 

them from surrounding environment, hence preventing free heavy metal 

circulation inside the cytosol [94]. Since other stresses, like heat shock and 

aluminium, also induce this type of expression, it was suggested that these 

MTs might express as part of a general stress response [50]. There is, however, 

some evidence to suggest that MTs are involved in copper homeostasis and 

detoxification [95]. The biosynthesis of MTs is regulated at the transcriptional 

level and is induced by several factors, including hormones, cytotoxic agents, 

and HMs, such as Cd, Zn, Hg, Cu, Au, Ag, Co, Ni, and Bi [96, 97].  

Morris et al. [88] identified and characterized the gene for metallothionein 

in brown seaweed Fucus vesiculosus. Recombinant metallothionein from 
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brown seaweed Fucus vesiculosus (rfMT)1 has been reported to remediate 

arsenic [98]. 

 

2.3.4. Chelation by Amino Acids, phytate and Organic Acids 

Besides the thiol-containing compounds (metallothioneins: MTs, GSH, 

PCs), other classes of metal-chelating agent have also been used for metal 

homeostasis, detoxification and tolerance (e.g., citrate, proline, malate, 

oxalate, nicotianamine (NA), histidine (His), phytate etc.) [99]. Kim et al. 

[100] found that transgenic Arabidopsis and tobacco plants that constitutively 

overexpress the barley nicotianamine synthase gen increased nicotianamine 

biosynthesis and conferred enhanced tolerance of high levels of metals 

particularly nickel. However, Hanikenne et al. [101] reported that 

phytosiderophore or his precursor nicotianamine are not found in algae and 

this function may thus have appeared after the emergence of land plants. 

Amino acids and their derivatives, such as histidines, glycine, beetaine, 

proline, arginine, glutamate and cysteines, in isolation and/or in coordination 

with thiol compounds contribute to metal chelation in plants [45, 62, 102]. 

Sharma and Dietz [62] reported that upon exposure to metals, plants often 

synthesize a set of diverse metabolites that accumulate to concentrations in the 

millimolar range, particularly specific amino acids, such as proline and 

histidine, peptides such as glutathione and the amines spermine, spermidine, 

putrescine, nicotianamine, and mugineic acids [62]. Various peptides 

consisting of metal-binding amino acids (mainly histidine and cysteine 

residues) have been studied for enhanced heavy metal accumulation by 

bacteria [103, 104]. Histidine (His) has a high capacity to chelate heavy 

metals. The histidyl dipeptide carnosine (b-alanyl-l-histidine) with antioxidant 

activity thought to be associated with its ability to chelate transition metals 

was also characterized in red seaweed Ancanthophora delilei [105]. 

Organic acids such as malate, oxalate, aconitate, malonate, tartrate and 

citrate have been evidenced to contribute to metal chelation [45, 62, 102, 106]. 

Wuana et al. [107] suggested that citrate appeared to offer greater potentials as 

chelating agents for heavy metals. Citric acid has been considered a major 

ligand at low Cd concentrations [108]. Jauregui-Zuniga et al. [109] showed 

that calcium oxalate could play an important role in heavy metal 

detoxification. Previously Mathys [110] proposed that malate chelated Zn in 

the cytosol and the complex was moved into the vacuole, where the uniformly 

abundant oxalate chelated the Zn, to free malate for return to the cytosol. 

Another ligands that can bind metals such as Zn and Alare phytates [111]. 
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Phytate are potential ligands for heavy metals and are found to play a role in 

tolerance and detoxification [42]. 

 

 

3. ROLE OF SEAWEED IN BIOMONITORING  

OF WATER POLLUTION 
 

Biomonitoring (Biological monitoring) is the specific application of 

biological response for the evaluation of environmental change for using this 

information in quality control program. Recently, there has been a growing 

interest in using algae for biomonitoring eutrophication, organic and inorganic 

pollutants, despite some problems associated with seasonal variations, 

temperature and salinity conditions and intrinsic factors such as age and 

growth rate [112-117]. Algae are an ecologically important group in most 

aquatic ecosystems and have been an important component of biological 

monitoring programs [118]. 

Chaudhuri et al. [119] reported that macroalgal species could be good 

biomonitors of contaminants that tend to reside in the dissolved phases (like 

heavy metals) compared to those contaminants that are lipophilic (like 

oraganochlorines). These lipophilic contaminants will not be readily taken up 

by macroalgal species, due to their low lipid content. 

As an alternative to the direct determination of heavy metals in seawater, 

these can be assayed in a suitable biomonitor, namely a marine macroalgae, 

and knowing the corresponding concentration factors, the mean metal contents 

in seawater can be estimated [112]. Seaweeds are used as bioindicators 

because of their distribution, size, longevity, presence at pollution sites, ability 

to accumulate metals to a satisfactory degree and ease of identification [120-

122]. Wan Maznah [118] suggested that algae are ideally suited for water 

quality assessment because they have rapid reproduction rates and very short 

life cycles, making them valuable indicators of short-term impacts. 

The seaweeds species can directly reflect the water quality assessment 

because they are sensitive to some pollutants, and algal metabolism is sensitive 

to the variation of environmental and natural disturbances [118]. The seaweeds 

are used in biomonitoring because they are easily cultured in the laboratory 

and sampling is easy, inexpensive and creates minimal impact on resident 

biota; relatively standard methods exist for the evaluation of functional and 

non-taxonomic structural characteristics of algal communities [123-127]. 
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The brown algae Cystoseira sp., and the green algae Ulva sp. and 

Enteromorpha sp. have high potential as cosmopolitan biomonitors for trace 

metals in the Aegean Sea [128]. Previously, Leal et al. [112] suggested that the 

marine benthic macroalgae Enteromorpha spp. and Porphyra spp. can be used 

as biomonitors of the seawater contents of Cd, Cu, Hg and Pb. In recent years, 

several species of the green algae Enteromorpha and/or Cladophora have been 

utilized to measure heavy metal levels in many parts of the world [129]. The 

high uptake of metals in green algae (Ulva lactuca and Enteromorpha 

intestinalis) and brown algae (Padina gymnospora and Dictyota 

bartayresiana) suggested that these algae may be used as potential 

biomonitors for heavy metal pollution [130]. Wong et al. [131] used 

Enteromorpha crinita as a biomonitor in the Hong Kong waters, and Say et al. 

[132] advocated the use of Enteromorpha species as biomonitors in temperate 

coastal waters. 

 

 

4. BIOREMEDIATION BY SEAWEEDS 
 

Bioremediation is the use of seaweeds or other organisms to reduce the 

concentrations or toxic effects of contaminants in the aquatic ecosystems. 

Phytoremediation is defined as a process of decontaminating soil and aquatic 

systems by using plants, fungi or algae to remove or degrade organic and 

inorganic pollutants [1]. Zhou et al. [133] defined the bioremediation as a 

scientific technique for assessing environment including human exposures to 

natural and synthetic chemicals, based on sampling and analysis of an 

individual organism’s tissues and fluids. This technique takes advantage of the 

knowledge that chemicals that have entered the organisms leave markers 

reflecting this exposure. 

However, phycoremediation is defined as a process of decontaminating 

soil or aquatic systems by using microalgae or seaweeds. Such a process has 

been used to clean up heavy metals, toxic aromatic pollutants, acid mine 

drainage, pesticides and xenobiotics and organic compounds [134]. 

Recently, the use of aquatic plants especially micro and macro algae has 

received much attention due to their ability to absorption of metals and taking 

up toxic elements from the environment or rendering them less harmful [135]. 

Sivakumar et al. [136] suggested that microalgae are capable of producing 

lipids and hydrocarbons quickly and their photosynthetic abilities make them a 

promising candidate for wastewater treatment (bioremediation) and can be 

used as an alternative energy source (Biodiesel). Worldwide, trees, grasses, 
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herbs, and associated fungi and microorganisms are being used increasingly 

for cleaning polluted sites. Phytoremediation is "on the brink of 

commercialization" [137], and is given a rapidly increasing market potential 

[138]. The phytoremediation market is still emerging in Europe, while in the 

US revenues are likely to exceed $300 million in 2007 [139]. Mudgal et al. 

[134] suggested that the plant used in the phytoremediation technique must 

have a considerable capacity of metal absorption, its accumulation and 

strength to decrease the treatment time. Besides cost-effectiveness, 

bioremediation is a permanent solution, which may lead to complete 

mineralization of the pollutant. Furthermore, it is a non-invasive technique, 

leaving the ecosystem intact. Bioremediation can deal with lower 

concentration of contaminants where the cleanup by physical or chemical 

methods would not be feasible [15]. Many green (Table 1), red (Table 2) and 

brown seaweeds (Table 3) are known to be a good heavy metal 

hyperaccumulators and can be used in bioremediation of polluted ecosystems.  

The seaweeds can eliminate heavy metals by two processes: 

bioaccumulation and biosorption. 

 

 

4.1. Bioaccumulation 
 

Bioaccumulation is a process that allows for binding toxic metals or 

organic substances inside a cell structure [140]. Bioaccumulation is an active 

metabolic process driven by energy from a living organism and requires 

respiration [3, 141]. It has been reported that stronger ligands, as they  

have been shown to complex metals in non-hyperaccumulators, are in 

hyperaccumulators used for transient binding during transport to the storage 

sites [142]. This confirmed that enhanced active metal transport, and not  

metal complexation, is the key mechanism of hyperaccumulation. The 

hyperaccumulating plants store metals in the vacuoles because in this 

organelle only enzymes like phosphatases, lipases, and proteinases [143, 144] 

are present, which have not been found to be a target of heavy metal toxicity. 

Suresh and Ravishankar [44], reported that seaweeds proved to be effective in 

hyperaccumulation of heavy metals as well as degradation of xenobiotics. 

Many seaweeds are able to accumulate high levels of trace metals (Tables 1, 2, 

3), which are sometimes larger than those found in water samples from the 

same site [41, 145]. Seaweeds are able to accumulate trace metals, reaching 

concentration values that are thousands of times higher than the corresponding 

concentrations in sea water [146-148]. Henriques et al. [149] showed that 
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bioaccumulation as a full remediation process brings great advantages but only 

if the contaminated water fulfils the criteria of minimal growth medium and 

exerts no critical toxic effect to cells. Gosavi et al. [150] demonstrated that 

four genera of macroalgae (Ulvasp.,Enteromorphasp.,Chaetomorpha sp. and 

Cladophora sp.) accumulated significant amounts of Fe, Al, Zn, Cd, Cu, As 

and Pb, noting that cadmium was absorbed better by Cladophorasp., while 

Chaetomorpha sp. and Enteromorpha sp. absorbed lead better. Previously, 

Tukai et al. [151] demonstrated that higher concentrations of as were found in 

brown seaweeds when compared with the red and green species. To study the 

removal of Hg from water by the living algae, Henriques et al. [149] assessed 

and explored the bioaccumulation capabilities of three different macroalgae 

species, Ulva lactuca (green), Gracilaria gracilis (red) and Fucus vesiculosus 

(brown) and they found that all seaweeds showed huge accumulation 

capabilities, reaching up 209 µg of Hg per gram of macroalgae (dry weight), 

which corresponds to 99% of Hg removed from the contaminated seawater. 

Ulva lactuca was the fastest to accumulate Hg. Leitenmaier and Küpper [142] 

reported that hyperaccumulators have been found for many heavy elements 

and within many groups of plants and algae, including at least the following: 

Al, As, Cd, Cu, I, Mn, Ni, Se, Zn [142]. Tonon et al. [152] evaluated the 

absorption of metals by three species of Gracilaria: Gracilaria tenuistipitata, 

Gracilaria domingensis and Gracilaria Birdiae. The differences between the 

three species in the concentrations of the various elements, probably is due to 

physiological, biochemical or genetic differences between the seaweeds or to 

different acclimatization events that occurred in their environments or 

microenvironments. These results suggest that some red seaweed is metal bio-

bioaccumulating organisms. Pawlik-Skowrońska et al. [69] reported that the 

two Fucus spp., Fucus serratus and Fucus vesculosus, accumulated higher 

total concentrations of metals than either Ulva intestinalis or Solieria chordalis 

independently of the level of contamination. This high capacity for 

accumulation of metals by these seaweeds, and especially Fucus spp., when 

exposed to complex metal mixtures in their natural habitats indicates that they 

must have effective mechanisms for metal homeostasis and detoxification. 

 

 

4.2. Biosorption 
 

Biosorption is a physiochemical process that occurs naturally in certain 

biomass which allows it to passively concentrate and bind contaminants onto 

its cellular structure [153]. Velásquez and Dussan [3] reported that biosorption 
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is a metabolically passive process, meaning it does not require energy, and the 

amount of contaminants a sorbent can remove is dependent on kinetic 

equilibrium and the composition of the sorbents cellular surface.  

Biomass from many organisms including fungi and algae has been 

extensively studied as an alternative adsorbent in removal of heavy metal ions 

[154, 155]. The mechanism of biosorption is based on a number of metal-

binding processes taking place with components of the cell wall [38]. 

Furthermore, there are other factors affecting the biosorption of metals by 

seaweed biomass that should be considered, such as cell size and morphology, 

pH of the external media, cation and anion concentration in the external media, 

metal speciation, temperature and physiology of the biomass used for the 

metal [156]. It has been established that metal sequestration is achieved 

through the following processes: physical sorption, ion exchange, chelation; 

and ion fixation in inter- and intrafibrillar capillaries and spaces of the 

structural polysaccharide matrix as a result of the concentration gradient and 

diffusion through cell walls [157-159]. Previously, Tsezos and Volesky [160] 

reported that alginates of marine algae usually occur as natural salts of K+, 

Na+, Ca2+ and/or Mg2+. These metallic ions can exchange with the counter ions 

such as Co2+, Cu2+, Cd2+ and Zn2+, resulting in the biosorptive uptake of the 

metals. 

It was shown that the brown seaweeds contained the greatest number of 

acidic functionalities (both total and weak) on the seaweed surface. Since it is 

thought that carboxyl groups (weak) are primarily responsible for metal 

sorption, especially in brown seaweeds (Tables 1, 2, 3), it was expected that 

the brown species would exhibit superior biosorption performance over the 

other seaweeds [161]. Vijayaraghavan et al. [162] showed that the marine 

green alga Ulva reticulate was found to be an effective biosorbent for the 

removal of copper, cobalt and nickel from aqueous solutions. Therefore, cell 

wall composition of green algae provides binding sites such as carboxyl 

hydroxyl amino and sulphate for metal ions [163-166] and (4) its collection 

from coastal regions can solve possible eutrophication problem. One of the 

most common macroalgae used in past studies of heavy metal biosorption 

from the environment, as well as for the removal of nitrogen and ammonia in 

fish aquaculture is the green alga Ulva [166, 167]. 

Using green seaweed, Zeroual et al. [168] found that Ulva lactuca can 

successfully used for mercury biosorption. Previously, Kuyucak and Volesky 

[169] observed that a green alga Halimeda opuntia performed equally well in 

cobalt biosorption along with one of the best-performed brown seaweed 

Ascophyllum nodosum at higher pH conditions. 
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Murphy et al. [161] studied the biosorption performance of Cu(II) by the 

dried biomass of the two red seaweeds Palmaria palmata and Polysiphonia 

lanosa, and they found that carboxyl and sulphonate functionalities involved 

in binding Cu(II) in both species. However amino and hydroxyl groups took 

part in Cu(II) binding in P. lanosa. 

Alkhalifa et al. [170] suggested that the main mechanisms of heavy metals 

biosorption by brown algae include some key functional groups such as 

carboxylic groups, which are generally the most abundant acidic functional 

group in the brown algae. They constitute the highest percentage of titratable 

sites (typically greater than 70%) in dried brown algal biomass. The adsorption 

capacity of the algae is directly related to the presence of these sites on the 

alginate polymer, which itself comprises a significant component (up to 40% 

of the dry weight) [170]. 

 

Table 1. Uptake and accumulation of metals by some green seaweeds 

 

Metal Species References 

As Codium cuneatum 

Maugeotia genuflexa 

Rhizoclonium tortuosum 

Ulothrix cylindricum 

[171] 

[172] 

[69] 

[173] 

B Caulerpa racemosa [174] 

Ba Codium cuneatum [171] 

Cd Enteromorpha sp. 

Cladophora fasicularis 

Codium tomentosum 

[128] 

[175] 

[176] 

Co Enteromorpha intestinalis 

Ulva lactuca 

[176] 

[176] 

Cr Enteromorpha sp. 

Ulva sp. 

[128] 

[177] 

Cu Codium tomentosum 

Enteromorpha sp. 

Rhizoclonium tortuosum 

Ulva lactuca 

Ulva sp. 

[176] 

[112] 

[69] 

[121] 

[128, 130] 

Fe Codium cuneatum 

Enteromorpha sp. 

Ulva lactuca 

[171] 

[128] 

[130, 178] 

Hg Enteromorpha sp. 

Ulva lactuca 

[112, 128] 

[149] 

Mn Ulva lactuca [176] 
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Table 1. (Continued) 

 

Metal Species References 

Ni Ulva lactuca 

Enteromorpha intestinalis 

[176] 

[176] 

Pb Cladophora fasicularis 

Enteromorpha sp. 

Rhizoclonium tortuosum 

[175] 

[128, 130] 

[69] 

Sr Codium cuneatum [171] 

Zn Enteromorpha sp. 

Rhizoclonium tortuosum 

Ulva lacuca 

Ulva reticulata, 

[128] 

[69] 

[121, 130] 

[179] 

 

Table 2. Uptake and accumulation of metals by some red seaweeds 

 

Metal Species References 

Cd Gelidium floridanum 

Gracillaria compressa 

Kappaphycus alvarezii 

Porphyra spp. 

Pterocladia capillacea 

[180] 

[176] 

[181] 

[112] 

[176] 

Co Gracillaria compressa 

Jania rubens 

Kappaphycus alvarezii 

Pachymeniopsis sp 

Polysiphonia lanosa 

[176] 

[176] 

[181] 

[182] 

[183] 

Cu Gracillaria compressa 

Porphyra spp. 

Solieria chordalis 

[176] 

[176] 

[69] 

Fe Gracilaria pachidermatica 

Laurencia papilosa 

Pterocladia capillacea 

[171] 

[171] 

[176] 

Hg Gracilaria gracilis 

Porphyra spp 

[149] 

[112] 

Ni Gracillaria compressa 

Gracillaria verrucosa 

[176] 

[176] 

Pb Gracilaria pachidermatica 

Gelidium floridanum 

Porphyra spp 

[171] 

[180] 

[112] 

Se Gracilaria edulis [183] 

Sr Laurencia papilosa [171] 

Zn Pterocladia capillacea [176] 
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Table 3. Uptake and accumulation of metals by some brown seaweeds 

 

Metal Species Reference 

As Fucus serratus [69] 

Au Ascophyllum nodosum 

Chondrus crispus 

Palmaria palmata 

Palmaria tevera 

Rhodymenia palmata 

Sargassum natans 

[185] 

[185] 

[185] 

[185] 

[186] 

[185] 

Ba Padina durvillaei 

Sargassum sinicola 

[171] 

[171] 

Cd Ascophyllum nodosum 

Cystoseira sp. 

Fucus vesiculosus 

Padina gymnospora 

Sargassum natans 

Turbinaria conoides 

[187] 

[128] 

[187] 

[130] 

[187] 

[141] 

Co Ascophyllum nodosum [169] 

Cr Cystoseira sp. 

Dictyota bartayresiana 

Fucus vesiculosus 

Sargassum sp. 

Turbinaria conoides 

[128] 

[130] 

[183, 188] 

[141] 

[141] 

Cu Fucus serratus 

Padina pavonica 

Rhizoclonium tortuosum 

 Sargassum boveanum 

Sargassum filipendula  

Sargassum fluitans  

Turbinaria conoides 

[189] 

[121] 

[69] 

[170] 

[190] 

[190] 

[141] 

Fe Fucus vesiculosus 

Cystoseira sp. 

Padina durvillaei 

Sargassum fluitans 

Sargassum sinicola 

[188] 

[128] 

[171] 

[191] 

[171] 

Hg Cystoseira sp. 

Fucus vesiculosus 

[128] 

[149] 

Mn Padina gymnospora [130] 

Ni Ascophyllum nodosum 

Fucus vesiculosus 

Padina gymnospora 

Sargassum fluitans  

Sargassum natans 

[192] 

[188, 192] 

[130] 

[192] 

[192] 
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Table 3. (Continued) 

 

Metal Species References 

Pb Ascophyllum nodosum 

Cystoseira sp. 

Fucus vesiculosus 

Sargassum natans 

Sargassum vulgare 

Turbinaria conoides 

[192] 

[128] 

[192] 

[192] 

[192] 

[141] 

Sb Turbinaria conoides 

Sargassum sp 

[193] 

[193] 

Sr Padina durvillaei 

Sargassum sinicola 

[171] 

[171] 

Zn Cystoseira sp. 

Fucus vesiculosus  

Laminaria japonica 

Padina pavonica 

Sargassum angustifolium 

Sargassum fluitans  

Sargassum latifolium 

[128] 

[194] 

[194] 

[121] 

[170] 

[194] 

[170] 
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