

Economic aspects of open ocean seaweed cultivation

Jip Lenstra, Jaap van Hal, Hans Reith,

Presented at the Alg'n Chem 2011, Montpellier, France (Conference 7-10 November 2011)

ECN-M--11-100

NOVEMBER 2011

Energy research Centre of the Netherlands

Economic aspects of open ocean seaweed cultivation

Jip Lenstra, Jaap van Hal and Hans Reith

Alg'n' Chem 2011, 7-10 November 2011, Montpellier, France

Aquatic biomass energy potential

Most feasible technical concepts	Area	Potential	
Set 1: Land based open ponds for	Arid land in (sub) tropical zones (deserts)	00.51	
microalgae	and close to coast (max 100 km)	90 EJ	
Set 3: Horizontal lines for	At existing infrastructure – f.e. offshore	110 EJ	
macroalgae	wind farms (up to 100 km offshore)		
Set 5: Vertical lines for macroalgae	Near coast (max 25 km) in nutrient rich water	35 EJ	
Set 6: Macroalgae colony	At open sea (biological deserts), up to 2000 km offshore	~6000 EJ	!
TOTAL		~ 6235 EJ	

Source: Ecofys. World energy consumption: 480 EJ/yr

The role of aquatic biomass for energy production

- Large scale & low costs required
- Micro algae are probably too valuable
- Seaweed in wind farms (North Sea) could be feasible combined with extraction of alginates
- Seaweed from ocean farms seems most promising for large scale biofuel production

Many ocean farm concepts proposed

TU Delft, 2008. Without enclosures, nutrient upwelling

http://www.idesign.li/Welcome/Services/Public.htm http://www.youtube.com/watch?v=xwV1sciDDUA

15-11-2011

Leese, 1976

ECN proposal

- The ocean gyres as location
- Not much current
- Sargasso seaweed has attractive properties (fast growing, floating, global occurrence)
- Sargassum natans uses nitrogen fixation by an associated epiphyte or cyanobacteria (Philips et al, 1986)

A **spiral oceanic surface current** driven primarily by the global wind system and constrained by the continents surrounding the three ocean basins (Indian, Pacific, Atlantic).

Ocean potential: >25.000.000 km²

Current global agricultural crop area: 15.000.000 km² (FAO, 2006)

Sargassum natans

- Sargassum seaweed is now a pest (on shores)
- It forms also a good habitat for fish and many other species
- It can be monitored by satellite (MERIS)

7

Ocean farm concept ECN

- Open farm seems most promising
- Farm location in gyre areas marked with buoys (ownership)
- Seeding with small fragments of Sargassum natans
- Selective fertilizer (no nitrogen) for Sargassum natans, slow release
- Selective harvesting (no fish or turtles)

Concept for offshore open ocean farming (Herfst, TU-Delft, 2008)

Harvesting and logistics

- Mass flows comparable to dredging ships
- (Partial) dewatering at sea (pressing)
- Further processing on shore (biorefinery)
- Ecological uncertainties: effects on marine ecosystem
- Much more research is needed

Economics

Advantages

- No road transport involved until after refinery
- Large scale shipping and harvesting possible
- No costs for surface use
- No fresh water use
- No land owners
- Fast growing species
- Abundant CO2 available

Disadvantages

- Ecological constraints
- International conventions
- No protected ownership
- Harsh conditions
- Long distances
- Very wet biomass

Cost estimate (preliminary)

- Scale: one harvester\transporter Aframax size (80.000 ton)
- Assumed seaweed density: 10 ton/ha (dw)
- Harvesting capacity 3000 ton/hr (wet)
- Ship rent and fuel costs: 0,3 €/ton/day

	US-harbor (500 km)	Rotterdam (6000 km)
Biomass in harbor (dw)	12 €/ton	35 €/ton
Ethanol plant (on shore)	0,15 €/ltr	0,15 €/ltr
Total ethanol costs	0,20 €/ltr	0,27 €/ltr
Market value ethanol*	0,60 €/ltr	0,60 €/lr
Total per liter petrol eq	0,29 €/ltr	0,40 €/ltr
Market value petrol	0,50 €/ltr	0,50 €ltr

* 750 Euro/tonne ethanol

Seaweed to reduce the garbage patches

- Low density and small particles (density 5 ton/km², 5 gram/m²)
- Methods to collect the garbage are expensive
- Collection together with seaweed could be possible with little extra costs
- App. 0,25% of dry mass would be garbage

Composition of Sargassum natans

Composition of *Sargassum natans* as reported by some studies.

Sargassum fluitans and S. natans Photo: <u>http://www.tamug.edu/rooker/coastal.html</u>

Sargassum	S. natans + S. fluitans, Arabian Gulf (Kamel, 1980)	S. natans, Guangdong, China (Wang et al, 2008)
Protein (% dry matter)	6.59	9.6
Lipid (%)	0.54	1.39
Carbohydrate (%)	76.43	63.97
Phosphorus (%)	0.0818	
Potassium (%)	19.56	
Energy (MJ/kg dry matter)	14.1	8.68

S. natans proteins compared with soy beans

Sargassum natans

- 6,6% (dw) proteins o.w.:
 - Methionine 2,3%
 - Lysine 4,5%
 - Threonine 3,8%

Source: Basil S. Kamel (1980)

Soy beans

- 36,5% proteins o.w.:
 - Methionine 1,4%
 - Lysine 7,4%
 - Threonine 4,9%

App. 5 ton dry S. natans could replace 1 ton soy beans for feed

Ocean seaweed to fuel chain

Shell, AB Rotterdam deliver CO2 to OCAP > horticulture

Conclusions

- Seaweed from ocean farming is a promising source for biofuel production with low costs and a large potential
- Seaweed could be a large source of proteins for cattle and fish feed
- Seaweed could help reduce ocean garbage and acidification
- Ecological benefits and risks need to balanced
- Independent ecological assessment required

Thank you for your attention

Contact

Jip Lenstra, lenstra@ecn.nl

Potential energy carriers from seaweed

- Ethanol, butanol from sugars (≥ 60 wt%) via fermentation
- Diesel and jet fuel via Aqueous Phase Reforming technology
- Bio crude via HTU
- Methane via anaerobic digestion

ECN activities on seaweed

- Bio Offshore 2005
- EOS-LT seaweed biorefinery
- SBIR-1 feasibility study
- SBIR-2 pilot cultivation
- At~Sea Advanced textiles (FP7)
- Mermaid (Multi-use offshore platforms, FP7)
- Main interest of ECN is conversion to energy!

Scale similarity agriculture/aquaculture

greenhouse horticulture

open field horticulture

farming

large scale farming

photo bioreactor

open pond aquaculture

seaweed farming

ocean farming

Seaweed to reduce ocean acidification?

- Ocean CO2 uptake 2.4 GtC (8.8 GtCO2) per year
- Production of app.15% of world energy consumption with ocean biomass would be needed to compensate
- High yields (ton/ha) and large area will be needed (10 dm t/ha, 20 mln km²)
- Ocean biomass could help but not enough to solve the problem

