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A B S T R A C T   

The amount of macroalgal biomass is an important ecosystem variable. Estimates can be made for a sampled area 
or values can be extrapolated to represent biomass over a larger region. Typically biomass is scaled-up using the 
area multiplied by the mean: a non-spatial method. Where algal biomass is patchy or shows gradients, non- 
spatial estimates for an area may be improved by spatial interpolation. A separate issue with scaling-up 
biomass estimates is that conventional confidence intervals based on the standard error (SE) of the sample 
may not be appropriate. The issues around interpolation and confidence intervals were examined for three fucoid 
species using data from 40 � 0.25 m-2 quadrats thrown in a 0.717 ha sampling plot on the shore of Galway Bay. 
Despite evidence of spatial autocorrelation, interpolation did not appear to improve estimates of the total plot 
biomass of Fucus serratus and F. vesiculosus. In contrast, interpolated estimates for Ascophyllum nodosum had less 
error than those based on the non-spatial method. Bootstrapped confidence intervals had several benefits over 
those based on the SE. These benefits include the avoidance of negative confidence limits at low sample sizes and 
no assumptions of normality in the data. If there is reason to expect strong patchiness or a gradient of biomass in 
the area of interest, interpolation is likely to produce more accurate estimates of biomass than non-spatial 
methods. Development of methodologies for biomass would benefit from more definition of local and regional 
gradients in biomass and their associated covariates.   

1. Introduction 

Large scale estimates of seaweed biomass are needed for evaluations 
of resource availability, carbon capture, food web structure and 
ecosystem function (Burrows et al., 2014; Krause-Jensen et al., 2018, 
Quartino and Boraso de Zaixso, 2008; Trevathan-Tackett et al., 2015). 
The amount of macroalgal biomass is often calculated using a relation
ship multiplying the suitable habitat area by a quadrat-scale estimate of 
biomass (e.g., Sharp et al., 2008; Werner and Kraan, 2004). 
Quadrat-scale biomass of seaweeds can be very variable. For example, 
the average coefficient of variation for the dry weight m� 2 of Asco
phyllum nodosum surveyed on five shores in Brittany was 67% (Gollety 
et al., 2011). Such variability inevitably causes uncertainty in scaled-up 
estimates of biomass. Confidence intervals for the total biomass of 
Ascopyllum nodosum and Fucus vesiculosus in Irish counties were typically 
50% of the estimate (Cullinane, 1984). 

Including additional information on sources of variability can 
potentially reduce the uncertainty of seaweed biomass estimates. For 
example, biomass can be related to environmental covariates like wave 
exposure (Burrows et al., 2010; Gorman et al., 2013). Some of the var
iables influencing seaweed biomass may not be well-defined or the data 

may not be available an appropriate scale. Models that include spatial 
information may capture some of the variability associated with dif
ferences between locations. With a suitable geostatistical model, dif
ferences between locations can be interpolated to make estimates of 
biomass (e.g., Addis et al., 2009; Rufino et al., 2006). This approach is 
relatively common in fisheries, but has been rarely applied to studies of 
algal biomass (but see Givernaud et al., 2005). 

The distribution of biomass among quadrats can cause issues in 
describing the uncertainty of estimates, particularly with an asymmetric 
spread of values. Parametric confidence estimates based on the standard 
error of raw data may not be appropriate with skewed data. The errors 
are likely to be greater where the number of quadrats is relatively small, 
such that the hypothetical distribution of sample means does not 
approach normality under the central limit theorem. Data trans
formation does not offer a simple way of dealing with skewed data. The 
issues of data transformation can be reflected in a number of ways. One 
example can be illustrated by considering a situation where the entire 
population has been sampled. The biomass is the total amount 
measured; equal to the arithmetic mean multiplied by the number of 
sampled units. A back-transformed mean will not be equal to the 
arithmetic mean, so would not be an appropriate basis for calculating 
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the total biomass measured. Where several transformations are plau
sible, different back-transformed confidence intervals are possible and 
there is no clear rationale for deciding which would be the most 
appropriate. Where the true distribution of the data is not well known, 
bootstrapping provides a method to estimate confidence intervals. 
Bootstrapping is based on resampling the data, as this can be considered 
the best source of information about the measured variable (Manly, 
1997). 

This paper makes estimates for the biomass of three intertidal fucoids 
in a sampling plot. In doing this, the estimates generated by a cross-site 
interpolation using geostatistics are compared to the non-spatial esti
mate based on the mean. Confidence intervals for extrapolating are 
estimated by bootstrapping as an alternative to parametrically defined 
intervals. Comparison of different species is used to examine the extent 
to which sampling guidelines can be generalized. The quadrat density in 
the sampled area is relatively high compared to typical field studies. This 
allows an examination of the variation in biomass estimates when 
sampling with different levels of intensity. The analyses developed in the 
current study contrast with previous studies of quadrat sampling in 
macrophytes: these have mostly focused on the efficiency of different 
replicate sizes (e.g., Downing and Anderson, 1985; Pringle, 1984). 

2. Methods 

Samples were taken from the shore at Furbo in Galway Bay. This site 
has an extensive intertidal area, with a mixture of areas dominated by 
bedrock, boulders, cobble or sediment. A sampling plot was defined with 
an upper boundary at the point where Fucus spiralis L. became the 
dominant cover. “Sampling plot” is used in this manuscript to refer to 
the area of shore within the polygon shown in Fig. 1. The lower 
boundary was where kelps became more frequent than Fucus serratus L. 
The sampling plot contained Ascophyllum nodosum (L.) Le Jolis, Fucus 
vesiculosus L. and Fucus serratus as the dominant macroalgae. The outline 
of the sampling plot was recorded using a WAAS/EGNOS enabled Gar
min eTrex 10 GPS. There is good satellite coverage at Furbo (frequently 
> 15 satellites visible), the plot outline suggests good positional accu
racy with respect to identifiable features, and previous observations 
with similar technology have indicated a median horizontal displace
ment error of 0.37 m (Witte and Wilson, 2005). 

Quadrat (0.25 m2, n ¼ 40) measurements of fresh weight biomass 

were made for the three dominant fucoids in the sampling plot. Quadrats 
were haphazardly thrown, with all macroalgae removed and placed in a 
plastic bag. The central location of each quadrat was recorded using the 
GPS unit. Species were identified and divided into groups for weighing 
in the lab. 

Location data for quadrats was transformed from WGS1984 to Irish 
grid (EPSG:29902), so that rasters of algal biomass could be defined in 
metric units for the sampling plot. Raster interpolation used ordinary 
kriging based on a raster cell size of 0.25 m2. Kriging was based on 
experimental variograms of the raw algal data. Variograms show any 
change in the average difference between measurements as a function of 
geographical distance between the points of measurement. The optimal 
kriging model was chosen from a comparison of exponential, spherical, 
gaussian, nugget, Matern and exponential class models. All of the 
models, except the nugget, describe the tendency for data to be spatially 
autocorrelated. The nugget model describes a situation with no spatial 
dependence between points. The model with the lowest error was used 
for subsequent interpolation. Rare, high biomass quadrats of Asco
phyllum resulted in the nugget model being chosen. Following Rufino 
et al. (2005), outliers were omitted to estimate the spatial structure in 
the absence of extreme values. In this approach, the largest value is 
omitted and fitted models are judged for goodness of fit. This process can 
be repeated, removing the next largest value and evaluating the results. 

The value of spatial information to estimates of biomass can be 
examined by comparing predictions for unobserved data using both 
spatial interpolation and the mean. The presence of unobserved data 
was simulated by 5-fold cross validation: dividing the data into 5 blocks 
with each block used once as test data, while the other blocks were used 
as training data. Outliers were not omitted when using cross-validation. 
This reduces the complexity of the comparison and avoids a ‘tuning’ 
factor that may inadvertently increase the performance of interpolation 
models with respect to the non-spatial alternative. 

95% confidence intervals are frequently used as a guide to the un
certainty of estimates. The conventional parametric confidence intervals 
are calculated from the mean � t(0.95).SE, where SE is the sample stan
dard error and t is the value of the two tailed t statistic at α ¼ 0.05. 
Where the distribution of means is not normally distributed (e.g., with 
skewed data), bootstrapping may provide a more appropriate estimator 
for confidence intervals. Bootstrapping resamples the measurements and 
calculates statistics based on the resampled data. The percentile method 

Fig. 1. Outline of sampling plot used for algal biomass estimation on the shore at Furbo.  
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ranks all the estimated statistics (means in this case) and then discards 
the top and bottom 2.5% to define the confidence interval. The Accel
erated Bias Corrected percentile limits (bca) method estimates two pa
rameters for the asymmetry and influence of outliers on the estimated 
statistic (Manly, 1997). These are then used to modify the conventional 
symmetric confidence intervals. 

To illustrate the effect of sample size on confidence intervals, the 
data were resampled using 5000 replicates at each point between 1 and 
40 quadrats. Approximate 95% confidence intervals were defined using 
the 2.5 and 97.5 percentiles. All bootstrapping and spatial data handling 
was carried out in R (R Core Team, 2019). Geospatial data was processed 
using the sp, raster, GIStools and rgeos packages within R (Bivand et al., 
2013; Bivand and Rundel, 2019; Brunsdon and Chen, 2014; Hijmans, 
2019; Pebesma and Bivand, 2005). Geostatistical modelling and kriging 
was carried out using gstat in R (Gr€aler et al., 2016; Pebesma, 2004). 
Colour palettes from the viridis package (Garnier, 2018) were applied to 
rasters generated in R. Bootstrap estimates were generated using the 
boot package (Canty and Ripley, 2019; Davison and Hinkley, 1997). 

Observed data are likely to lie somewhere on a spectrum between a 
spatially random pattern and a strong spatial gradient of values. Esti
mates of biomass based on the mean are essentially assuming the first 
case, spatial randomness. The effect of a strong gradient can be simu
lated. For example, a strong gradient in biomass can be created by 
sorting the data for F. vesiculosus so that the highest values occur at lower 
latitudes in the plot (representing the seaward edge in this study). The 
effects of such a strong gradient on the confidence that can be placed in 
interpolation were examined by applying the same kriging and cross- 
validation techniques that were used with the observed spatial distri
bution of algal biomass. 

3. Results 

The three target fucoid species were all found in the sampling plot 
(Fig. 2). The uneven outlines of the plot reflect boundaries between mid- 
shore fucoid habitat and other substrates, such as a gully filled with 
kelps along the southern border of the plot. The overall area of the 
sampling plot was 0.717 ha. The three target species occurred 
throughout the sampling plot, with the exception of a gap in A. nodosum 
towards the southeast corner, with F. serratus less common towards the 
north of the plot. These two species were not distributed randomly with 
respect to each other, with co-occurrences of A. nodosum and F. serratus 
being less frequent than expected by chance (8 co-occurrences, p < 0.05, 
Fisher’s exact test). In contrast, there was no segregation of F. vesiculosus 
with the other two species, with 17 and 23 co-occurrences in quadrats 
with A. nodosum and F. serratus respectively. 

There was patchiness in the distributions of fucoid fresh weights, 

with evidence for autocorrelation in the experimental variograms for 
each species (Fig. 3). The spherical variogram model was chosen as the 
one with the lowest fitting error. The range of autocorrelation was 
similar in the two Fucus species (16.1 m for F. vesiculosus and 15.7 m for 
F. serratus). A. nodosum had a larger range, 29.3 m, indicating detectable 
spatial dependence between quadrat biomass values over greater dis
tances than the other species. 

Interpolated maps of seaweed biomass emphasize how patchy the 
distribution of macroalgae can be (Fig. 4). The largest mean quadrat 
biomass was recorded for A. nodosum. Despite the broader coverage of 
F. vesiculosus, the total biomass in the sampling plot was largest for 
A. nodosum (Table 1). The maximum difference between estimation 
techniques was 6% of the estimate based on the mean: 1519 kg. One 
method of evaluating the likely value of estimates is to evaluate them 
against data not used in making the estimate. This was carried out using 
5-fold cross validation, splitting the data into training and test data. For 
each of five folds, this creates test data consisting of eight observations 
that were not used in calculating the mean or an interpolated surface. 
The root mean square error (RMSE) of predictions from interpolated 
data was higher for F. vesiculosus and F. serratus (Table 2), indicating that 
estimates based on the mean are likely to be more accurate. In contrast, 
estimates based on an interpolated surface had lower RMSE for 
A. nodsosum. Biomass estimates based on an interpolated surface would 
be more accurate for this species. 

The artificial gradient in F. vesiculosus (Fig. 5) does not affect the 
non-spatial summary statistics, but the simulated gradient has a revised 
biomass estimate of 18354 kg F vesiculosus in the plot and a k-fold RMSE 
prediction error of 0.378 kg. The inherent predictability of a strong 
spatial gradient therefore results in an improved confidence in the 
interpolated surface. 

A. nodosum had the largest quadrat mean and standard deviation of 
the three fucoids (0.85 kg, SD 2.281). None of the species had a normal 
distribution of biomass among quadrats (Shapiro-Wilk tests, 0.429 �W 
� 0.855, all p < 0.05). The measurements for A. nodosum also had the 
largest skew of the three species. Larger variance and skew are reflected 
in the wide empirical bootstrap confidence intervals for A. nodosum 
(Fig. 6). These limits are also asymmetrical around the mean, reflecting 
the positive skew of measurements. The empirical bootstrap confidence 
intervals narrow with increasing quadrat number, this pattern would be 
expected, with increased numbers of replicates improving the precision 
of biomass estimates. To have an upper confidence limit of approxi
mately double the mean, bootstrapping suggests that 5 quadrats will be 
needed for F. vesiculosus, 17 for F. serratus and 36 for A. nodosum. The 
percentile and bca estimates of confidence limits are at larger values 
than those from conventional parametric statistics. For example, the SE 
based confidence intervals for 40 quadrats of A. nodosum are 

Fig. 2. Locations of quadrats containing fucoid species in the sampled plot. The outline was recorded in the field as an area where the main species were A. nodosum, 
F. vesiculosus and F. serratus. 
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0.121–1.580 kg quadrat� 1, compared to the range of 0.383–2.086 kg 
from the bca method. Confidence limits (bca method) for F. vesiculosus 
were 0.456–0.885 kg quadrat� 1, and 0.113–0.360 kg quadrat� 1 for 
F. serratus. The lower limit becomes problematic if the conventional (SE 
based) confidence intervals are estimated for smaller sample sizes. With 
fewer than 30 quadrats, the lower limit for A. nodosum is negative, which 
is not possible to interpret. Confidence intervals from the empirical 
bootstrap do not have this issue as the lowest value observable is 0. 

4. Discussion 

There are good arguments for avoiding the conventional mean �
t(0.95).SE confidence limits to express the uncertainty in algal biomass 
estimates. Quadrat measurements were not normally distributed and the 
skew in data makes symmetrical confidence limits unreliable. The con
ventional confidence limits were biased, in that both upper and lower 
limits were lower than bootstrapped confidence intervals. As the aim is 
to estimate total biomass, the use of transformation of data followed by 
back transformation of confidence limits cannot be recommended as no 
specific transformation can be defined or justified. Furthermore, the 
lower limit of conventional confidence intervals can be negative at small 
sample sizes. It is not clear how to interpret negative biomass values of 
this type. Bootstrapped confidence intervals should be used for 
expressing uncertainty in algal biomass measurements from quadrats. 

If extrapolating biomass measurements to a region that has not been 
directly surveyed, there is no alternative to multiplying a mean biomass 
by area. In the case of summarizing biomass across an area that includes 
the measured quadrats, the evidence is mixed. Spatially explicit infor
mation from F. vesiculosus and F. serratus did not improve the estimates 
at quadrats not used in making estimates. The mean of the training set 
was a marginally better predictor for these species and differences in the 
total biomass predicted by spatial and non-spatial methods were rela
tively small. In contrast, interpolated surfaces had some additional 
predictive value in A. nodosum. Using an estimate based on the mean 
quadrat biomass may have underestimated the A. nodosum biomass in 
the sampling plot by 1519 kg (6%). 

The value of spatial information for A. nodosum reflects the wider 
extent of spatial autocorrelation (spatial dependence) between quadrats 
in this species compared to the other fucoids. The influence of spatial 
dependence is further emphasized in the example of F. vesiculosus with 
an artificially constructed gradient. Reduced prediction error in com
parison to those generated with observed data reflects the increased 
spatial dependence in the simulated gradient, as the training set mea
surements contain more information about the test measurements. 

Gradients in biomass can clearly be important for estimates of overall 
totals. Ignoring gradients is not necessarily an issue for the accuracy of 
non-spatial summaries of biomass, although if sample locations were not 
stratified with respect to the gradient an unintentional bias could occur. 
The recommendations of Miller and Ambrose (2000) include stratified 
sampling and/or sampling on a transect perpendicular to the elevational 
contours, approaches that address the relative weakness of random 
quadrat placements in the face of gradients in the intertidal. There are 
probably few generalities about the strength of vertical and horizontal 
gradients in biomass on shores, as variation in environmental conditions 
and ecological processes is potentially complex. In the sampling plot 
investigated in the current study, the spatial variation was patchy, 
without clear gradients. This may reflect the uneven shore, which has 
variations in height and mixtures of boulders, cobbles and bedrock. 
Algal biomass will theoretically be lower with increased elevation on the 
shore (Johnson et al., 1998), as long as interactions with other processes 
like grazing do not override the pattern. Eriksson and Bergstr€om (2005) 
give an example of how biomass of species in the Baltic (including 
F. vesiculosus) is structured by a number of environmental variables 
including depth. Given the possibility of covariates that can predict algal 
biomass, it would be useful for large scale estimates of algal biomass to 
define predictors that could be extracted from digital elevation models 
or other remotely-sensed sources of data. 

It is not clear why different species would have different spatial 
dependencies and maximum biomass levels. A. nodosum had a higher 
biomass in quadrats than the two Fucus species, in addition to a longer 
range of spatial dependence. The greater accumulation of biomass may 
reflect A. nodosum’s longer life span (Åberg, 1992) and a growth form 
that can lead to longer fronds (Johnson et al., 1998). Fucoid zygotes sink 
rapidly and may be released when conditions are calm (Serrao et al., 
1996), factors contributing to a relatively restricted recruitment at 

Fig. 3. Variograms of the three fucoid species. Semivariance indicates the 
average degree of difference between points separated by different distances. 
The lines are the fitted spherical variogram models used for kriging. The var
iogram for A. nodosum was defined after deleting one outlier (the 
maximum value). 
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distances from the adult fronds (e.g., Dudgeon and Petraitis, 2001) that 
could potentially cause patchiness. Dudgeon et al. (2001) caution, 
however, that zygote dispersal is variable and that post settlement 
processes will also have a role in the spatial pattern of algal densities. 

The precision of estimates of algal biomass could potentially be 
improved by combining quadrat biomass data with remotely sensed 
data. Satellite images, aerial photography and drones offer potential 
means to identify the cover and extent of algal beds (Davies et al., 2007; 
Brodie et al., 2018; Konar and Iken, 2018; Murfitt et al., 2017; Setya
widati et al., 2017). If species can be identified, this allows a mean 
biomass estimate to be multiplied by the area occupied to provide a 
shore-wide or regional biomass total (Guillaumont et al., 1993). Un
fortunately, three issues complicate the combination of remote sensing 
and field survey: 1) canopies can be mixed (this study). The appropriate 
mean species biomass is not yet obvious in these cases; 2) species, 
particularly in the same order or genus, can be difficult to separate, even 
with multispectral information (e.g., Mcilwaine et al., 2019 were unable 
to separate Fucus species); 3) the biomass reflects the thickness of the 
canopy, a property that is difficult to estimate from remote data. Fucoids 
are optically dark and the upper layers obscure information about the 

fronds below, making remotely sensed data incomplete for areas of 
higher biomass (e.g., Guichard et al., 2000). Difficulties in relating 
remotely sensed data to biomass are not limited to fucoids (Mitchard 
et al., 2014). The optical density of fucoids contrasts with the more 
transparent fronds of Ulva, where Hu et al. (2017) were able to calibrate 
a remotely sensed floating algae index using a sensor above tanks filled 
with different amounts of seaweed. 

While bootstrapped estimates for confidence intervals have advan
tages over other approaches, they are likely to be overoptimistic. This 
can be related to the extent that the sample data is an estimate for the 
unobserved variability in the system. If the bootstrapped dataset is 
‘small’, the confidence intervals may be underestimates (Schenker, 
1985). Of course, without information on unobserved areas, it is difficult 
to judge what sort of sample is ‘small’. The current study sampled up to 
0.14% of the area to which the biomass extrapolation was made. This 

Fig. 4. Interpolated rasters showing fucoid biomass in the sampled plot. Scale bars show kg fresh weight in 0.25 m2 cells, with green and yellow tones indicating 
relatively high biomass. 

Table 1 
Estimated biomass of algae in the sampling plot. Estimates are the sum of raster 
cells in the interpolated surface or calculated from the mean multiplied by the 
total sampling plot area.  

Species Estimates 
based on 
mean (kg) 

Estimates based 
on interpolated 

surface (kg) 

Difference 
between 
estimates 

(kg) 

Difference 
between 

methods (%) 

A. nodosum 24376 25894 � 1519 � 6.2 
F. vesiculosus 18420 17866 555 3.0 
F. serratus 5599 5799 � 200 � 3.6  

Table 2 
Comparison of RMSE of predictions from five-fold cross validation for algal 
weight in individual quadrats. Lowest values in each species pair (implying the 
best predictions) are in bold.  

Species Estimates based on mean 
(kg) 

Estimates based on interpolated 
surface (kg) 

A. nodosum 2.276 2.085 
F. vesiculosus 0.679 0.771 
F. serratus 0.373 0.403  

Fig. 5. Strong gradient in F. vesiculosus simulated by associating data values 
with latitude. Data was sorted with the largest values at the south of the 
sampled plot. The scale bars shows kg fresh weight in 0.25 m2 cells. 
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level of extrapolation involves at least an order of magnitude greater 
coverage than other studies (e.g., Sharp et al., 2008). It is clear that most 
extrapolations for algal biomass will involve wide confidence intervals, 
reducing the precision for estimates of trend (or lack of), food web 
models, and carbon budgets. Ultimately, robust estimates of macroalgal 
biomass will require integration across a range of scales, incorporating 
any meaningful covariates, with shared protocols and data so that esti
mates of variability can be placed in an appropriate context (Duffy et al., 
2019). Development of agreed methodologies is particularly urgent if 
reliable estimates of ecosystem change, resource availability and carbon 
storage are to be made. 

Data available at: https://data.mendeley.com/datasets/txt7ks2zbv/ 
draft?a¼c0ebba30-249a-40c3-89d2-c948c8e3e0e1 
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