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Abstract: Increasing biomass production yields is a critical challenge for macroalgae biorefineries. 
The continuous tumbling and mixing of free-floating algae through water or airflow has been shown to 
increase the productivity of algae in land-based cultivation systems. This approach has not been tested 
thoroughly in offshore cultivation. We report, here, a field feasibility study on the increase in green mac-
roalga Ulva sp. growth rates in offshore cages, achieved by the combined effect of tumbling and mixing of 
the algae using influxes of water and air. The experimental system was tested in a shallow coastal area in 
central Israel, in the eastern Mediterranean Sea. A maximum daily growth rate of 19.2%, areal productivity 
of 33.72 g dry weight (DW) day−1 m−2, and volumetric yields of 37.78 g DW day−1 m−3, together with 38.47 
± 0.01% ash and 5.28% protein content on a dry matter basis were achieved in the cages with intensified 
cultivation in the first week of May 2017. Our study shows that cultivation with tumbling and mixing of bio-
mass with air, and water exchange with the environment is a feasible method to increase Ulva sp. bio-
mass productivity offshore. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd

Supporting information may be found in the online version of this article.
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limitations, and increasing exposure to light and avail-
able dissolved nutrients, thus enhancing photosynthesis 
and productivity.37 Tumbling with air may also prevent 
the development of competitive macroalgal grazers and 
epiphytes, such as diatoms.38 Our results show that growth 
rates of Ulva sp. can be intensified by a combination of 
tumbling, air mixing, and external water supply. 

Materials and methods

Cultivation site

The Ulva sp. cultivation site was located in a shallow 
coastal area in the proximity of an electric power plant 
in Tel Aviv (32° 07′ 00″ N 34° 49′ 00″ E), Israel (Fig. 1(a)). 
The reasons for choosing this particular experimental site 
included easy access from the shore and a breakwater for 
additional protection, power supply availability, restricted 
access for the general public and water sports activities, 
and no effects of warm water outflux from the power 
plant. Altogether, the location allowed for continuous 
monitoring of the biomass cultivation site conditions. 

Macroalgae biomass inoculum

The model seaweed used in this study belongs to the genus 
Ulva sp., a green marine macroalga distributed worldwide 
and found in the intertidal and shallow waters within the 
Israeli Mediterranean Sea shores. The exact taxonomic 
status of the Ulva sp. used in this study suggests a mix of 
two morphological and genetically similar types, Ulva 
rigida and Ulva fasciata.39 Specimens were taken from 
stocks cultivated in an outdoor seaweed collection at 
Israel Oceanographic and Limnological Research, Haifa, 
Israel (IOLR), in 40 L fiberglass tanks supplied with run-
ning seawater, tumbling with air, and weekly additions of 
1 mmol L−1 NH4Cl and 0.1 mmol L−1 NaH2PO4. With each 
nutrient application, the water exchange was stopped for 
24 h to allow for nutrient uptake.

Offshore cultivation in cages with 
tumbling, air mixing and water 
exchange

Although, in nature, Ulva grows primarily attached to hard 
substrates, it is frequently found growing in a floating stage 
within the water column. Cultivation of free-floating algal 
biomass provides an opportunity to use water volumes for 
cultivation instead of large areas used for attached biomass 
cultivation,22 thus reducing the area used for cultivation.24 

Introduction

A
griculture is the primary method to produce bio-
mass for food, biochemicals, and biofuels, but the 
European Biorefinery Joint Strategic Research 

Roadmap for 2020 indicates that ‘a key issue for biomass 
production in Europe is land availability.’1 Countries that 
have the problem of limited arable land for energy crop 
cultivation can find marine macroalgae farming a useful 
alternative that can provide a sustainable feedstock bio-
mass for downstream processing in biorefineries.2–5 For 
instance, a methodology for macroalgae biorefinery design 
for rural areas in developing countries has been devel-
oped.6,7 A key challenge in the field of macroalgae biorefin-
ery remains the sustainable production of the biomass.8–10 

Offshore cultivation of macroalgae is one sustainable 
strategy to produce bioenergy and bioproducts without 
using arable land and scarce freshwater resources.11,12 On 
a global scale, most offshore seaweed biomass is produced 
in Indonesia, the Philippines, China, India, and Tanzania, 
and is currently under investigation in US and EU biomass 
programs.13,14 The concepts of offshore marine biomass 
cultivation include farms for kelp growth,15 tidal flat 
farms, floating seaweed cultivation settings,15,16 ring culti-
vation systems,17 and, most recently, wind-farm integrated 
systems18 and underwater ropes.19

Following the success of on-land photobioreactors in 
providing high biomass yields when the major cultivation 
parameters of temperature, light, mixing, and nutrients 
were controlled,20,21 theoretically possible intensified off-
shore cultivation methods were proposed.22,23 However, to 
the best of our knowledge, the intensification methods that 
control key parameters offshore, have not been demon-
strated in the field.

The goal of this work was to perform a feasibility study of 
intensified macroalgae cultivation offshore. In this study, 
an intensification method was applied to a ~2 m3 cage, 
deployed in a shallow area in Tel Aviv, Israel, close to a 
power plant, with tumbling and mixing of biomass with air 
and water supplied by an airlift pump from a deeper layer. 
The green seaweed Ulva sp. was chosen as the model species 
as it is very common on the shores of Israel and displayed 
high biomass productivity in extensive cultivation offshore 
in Israeli waters.24,25 Furthermore, the production of pro-
teins and starch,26–28 and biomass fermentation to acetone, 
ethanol, butanol, and polyhydroxyalkanoates from several 
Ulva species has already been demonstrated.29–35 

Tumbling with air previously intensified Ulva sp. growth 
at low nutrient levels in on-land reactors.36 It causes 
movement of the algae in the reactor, reducing shading 
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pulleys, hung up to remove excess water, and drained by 
gravitation (Fig. 3(d)).

Two experiments were performed. The first experiment 
started on April 20, 2017 and ended on May 29, 2017. The 
second experiment started on June 15, 2017, and ended on 
July 12, 2017. Sampling was also done every 2 weeks, so 
that the yield was harvested, and 2 kg of algae were loaded 
to the reactor every 2 weeks. Daily growth rate (DGR%) 
was calculated as in Eqn (1):40,41 
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where N (d) is the number of days between measure-
ments, mout is the dry weight (DW) measured in g at the 
end of each growth period, and min is the DW (g) of the 
inoculum. We used a standard protocol for surface water 
removal by centrifuging the algal biomass in an electric 
centrifuge (portable washer spin dryer CE-88 (6.0 kg) 2800 
rpm, stainless steel housing, Ningbo Beswin Electric Co., 
Ltd., Ningbo, China) until all surface water was removed 
(< 1 mL separated). Drying was done at 40 °C until con-
stant weight (< 5% change in consequent measurements). 
Dry matter was determined by drying in 105 °C for 3 h.

To test the potential of tumbling, air mixing, and external 
water exchange on the intensification of the Ulva sp. bio-
mass growth, we designed a floating cage equipped with 
air-flow outlets at the bottom for constant aeration (Fig. 
1(b)). The U-shape carcass (working volume 1.785 m3, total 
illuminated area 2 m2, Fig. 1(c)) was built from high-density 
polyethylene pipes (Ø = 50 and 35 mm) and a Ginigar anti-
insect net (25 mesh, Fig. 1(c)), which effectively prevented 
fish grazing. Air was supplied to the bottom of the cage 
through a polyethylene pipe (Ø = 20 mm) at 40–45 L min–1 
LPM / reactor or 20–22.5 LPM m−3 of water, depending on 
the load density of the biomass (ranging from 1 kg m−3 at 
the beginning of the cultivation to 4.5 kg m−3 at harvest-
ing). Additional water was pumped into the cage from 1 m 
depth using four airlifts made from an HDPE single wall 
corrugated pipe (Ø = 20 mm) and 7/4  PVC pipes (Fig. 1(d)). 
The airlift pumped 11.03 m3 of water per day, which equals 
618.2% day−1 water exchange in the cage.

The system was installed ~30 m from the shore (Fig. 
3(a,b)). The average streamflow at that point was meas-
ured and found to be in the range of 6–8 cm s−1.24 Air 
was supplied from 6 a.m. to 6 p.m. through a central bot-
tom pipe through 2 mm holes (Fig. 3(c)). For harvesting, 
the reactor was removed from the water using a series of 

Figure 1. (a) Cultivation site. (b) Schematic design of the reactor with intensification with tum-
bling, mixing and water exchange. (c) Digital image of the reactor for intensified cultivation. (d) 
External airlifts for water exchange enhancement.
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of Ulva were loaded per bottle. Artificial seawater (salinity 
3.5%, pH 8.2) was supplied with 21.4 mg L−1 of NH4NO3 and 
4 mg L−1 of H3PO4 (Haifa Chemicals Ltd, Haifa, Israel). Air 
was supplied at 0.36 LPM per bottle from 6 a.m. to 6 p.m. The 
water with nutrients was changed daily. The total cultivation 
time was 7 days per experiment. Two separate experiments 
were conducted. The first experiment was conducted from 
June 12, 2018 to June 19, 2018 (three replicates for tumbled 
with air and mixing and three replicates for non-tumbled 
and not-mixed bottles). The second experiment was con-
ducted from June 19, 2018 to June 26, 2018 (six replicates 
for aerated and six replicates for non-aerated bottles). Thalli 
rotation velocity was measured for a single thallus for half 
and full cycle (Fig. 2(b)) in three bottles with a stopper watch.

Solar irradiance and temperature

Solar irradiance and temperature were measured every 
15 min, using an Onset HOBO Pendant® temperature / 
light 64K data logger (Onset Inc., Bourne, MA), installed 
at 40 cm depth inside the aerated cage with the biomass. 
The additional sensor was installed inside the flat cage that 
was not aerated at ~10 cm depth. For the on-land system, 
temperature and irradiance were measured in the water 
and outside of the bottles with two sensors. Lux values 
were converted to µmoles m−2 s−1 by multiplying measured 
lux values by 0.019, a constant used for sun illumination 
({http://www.egc.com/useful_info_lighting.php}).

Nutrients measurement at the cultivation 
site

To measure nutrients, 50 mL of water was sampled at 
the cultivation site every 2 weeks with biomass sampling 
/ loading. Nutrients were analyzed less than 1 h after 
sampling in duplicate. Ammonia, nitrite, nitrate, and 
phosphate were quantified using a SMART3 colorimeter 
(LaMotte, Chestertown, MD) with kits and protocols sup-
plied by the manufacturer. 

Biomass composition analysis

For ash analysis, the biomass (DW) was ignited in pre-
weighed, clean crucibles at 550 °C for 3 h in a muffle furnace 
(Thermolyne muffle furnace, Thermo Scientific, Waltham, 
MA). The crucibles were finally removed from the furnace, 
kept in a desiccator to cool them to room temperature, 
and weighed. The analysis was done in triplicate. Protein 
content was determined according to AOAC 981.10 with an 
automatic Kjeldahl system for total protein quantification. 
A protein calculation factor of 5 was used.42 The analysis 

Extensive cultivation

For extensive cultivation, a 2 cm layer of thalli was placed 
between two layers of nets (TENAX Tubular nets for 
Mussel Breeding and Packaging; Shellfish Polypropylene, 
mesh configuration – rhomboidal, 32 G, 223 neutral., 74 
N 140 green, Gallo Plastik, Italy) in the cage that was nei-
ther tumbled nor mixed, which had free water exchange 
with the surrounding sea. The cage (0.15 m × 0.3 m, 
total illuminated area 0.045 m2) was built from polyeth-
ylene (D = 32 mm), high-density polyethylene (HDPE) 
(D = 16 mm) pipes, and a TENAX (Gallo Plastik, Italy) 
net (Fig. 2(a)) to allow for full illumination and to prevent 
grazing of the algae by fish. The cages were connected to 
the rope and located ~30 m from the shore, at a distance of 
~10 m from the aerated cage (Fig. 3(b)). Unlike the aerated 
cage, the biomass was held at a depth of ~ 10 cm in a single 
layer with no aeration supplied. Fresh weight (FW) of 20 g 
of Ulva was loaded to each cage every 2 weeks.

Determination of the effect of tumbling 
with air on Ulva sp. growth rate in the 
controlled on-land cultivation system

To understand better the effect of tumbling with air on the 
Ulva sp. biomass growth rate in a controlled environment, 
the biomass was cultivated in polyethylene terephthalate 
(PET) plastic bottles (1.5 L) with modified caps, to allow for 
water exchange and air supply (Fig. 2(c)). Five grams FW 

Figure 2. (a) Cages for extensive cultivation. Digital images 
and geometry. (b) Bottles for cultivation on-land in con-
trolled conditions. The trajectories for measured thalli veloc-
ity are schematically shown.
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(Thermo Fisher Scientific, Waltham, MA) in an autoclave 
(Tuttnauer 2540MLV, Breda, Netherlands). The mono-
saccharide content in the hydrolysates was quantified by 
high-pressure anion-exchange chromatography coupled 
with pulsed amperometric detection (HPAEC-PAD) using 
a Dionex ICS-5000 platform (Dionex, Thermo Fischer 
Scientific) with an analytical column (Aminopack 10) 
and its corresponding guard column. An electrochemical 
detector with an AgCl reference electrode was used for 
detection. The analysis was performed using an isocratic 
flow of 4.8 mM KOH for 20 min. The column was then 
washed with 100 mmol L−1 KOH between each run and 
re-equilibrated with 4.8 mmol L−1 KOH prior to injec-
tion. The column temperature was kept at 30 °C, and the 
flow rate was set to 0.25 mL min−1. Calibration curves 

was conducted by a certified food chemistry company 
(AminoLab, Rehovot, Israel). For caloric value analysis, 20 g 
(DW) of biomass, harvested on May 3 and 17, 2017, dried at 
40 °C to constant weight, was analyzed for energy content 
according to ASTM D5865 – 13 (Standard Test Method 
for Gross Calorific Value of Coal and Coke) by a certi-
fied laboratory of the Israel Electric Corporation. Element 
analysis, CHNS, was done using a Thermo Scientific carbon, 
hydrogen, nitrogen, sulfur (CHNS) Analyzer (Flash2000) at 
Technion, Israel Institute of Technology chemical charac-
terization and surface chemistry unit. 

For monosaccharide quantification the biomass was 
hydrolyzed as optimized by Jiang et al.43 (2% sulfuric 
acid, 1:20 solid to solvent ratio, 30 min, 121 °C) in 10 mL 
Nalgene™ Oak Ridge High-Speed PPCO centrifuge tubes 

Figure 3. (a) Digital image of the cultivation reactor with external airlifts. (b) Deployment of the reactor with algae to the culti-
vation site. (c) Tumbling with air and mixing of Ulva sp. biomass in the reactor. (d) Harvested Ulva biomass after water removal 
with gravitation. (e) Solar dried Ulva biomass.
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the temperature in the cages increased from ~24 to 32 °C 
during the cultivation period. Comparison between an 
average temperature in the cages that were mixed and the 
cages that were not mixed with aeration showed that, until 
July, an aerated cage was at least 2 °C cooler than a non-
aerated cage (see supporting information, Fig. S1). This 
is important, as the temperature at these levels (close to 
30 °C) slows Ulva sp. growth.45,46 Measured nutrient levels 
are shown in Table 1. Large fluctuations in nutrients levels 
(NH3 0.09–2.16 ppm, NO3

− 0.44–2.11 ppm, NO2 0.13–1.53, 
and PO4

−3 0.05–0.99 ppm) were observed.

Growth rates and area productivity

The biomass was weighed every 2 weeks and the yield was 
harvested. In the first and second experiments, the high-
est growth rates (19.2% and 4.1%) were measured after 

were produced for each sugar with internal standards. In 
this work we quantified rhamnose, arabinose, galactose, 
glucose, xylose, glucuronic acid, mannitol, fucose, and 
mannose. The glucuronic acid and uronic acid derivative 
content were monitored using a program that involved 
three eluents (NaOH, ultrapure water, and sodium acetate) 
– see supporting information, Table S1. Two additional to 
glucuronic peaks were observed in all samples that were 
assumed as aldobiouronic acid and iduronic acid as stated 
in44 and reported here as uronic acid derivatives. Each 
algal sample was hydrolyzed in duplicate before analysis. 
Each of the hydrolysates was analyzed in duplicate using 
high-pressure ion chromatography (HPIC). All data are 
reported as the weight fraction of the specific monosaccha-
ride biomass (µg of monosaccharide mg−1 DW biomass).

Statistical analysis

Statistical analysis was performed with the Excel (ver. 
13, Microsoft, WA) data analysis package and R software 
(version 2015, RStudio Inc., Boston, MA, USA). Standard 
deviation (±STDEV) is shown in error bars. For group 
comparison, a one-tail Student-t analysis was performed. 

Results and discussion

Environmental parameters during the sea 
cultivation period

The illumination and temperature profile in the aerated 
reactor at 40 cm depth is shown in Fig. 4. Importantly, 

Figure 4. Illumination (a) and Temperature (b) profile inside the cultivation reactor. Information was recorded with 15 min reso-
lution continuously.

Table 1. Nutrients levels measured at the 
cultivation site. Data shown is an average of a 
duplicate measurement.
Measured 
date

NH3 
(ppm)

NO3
−

 
(ppm)

NO2 
(ppm)

PO4
−3

 
(ppm)

20 April 17 0.61 0.44 0.20 0.06

3 May 17 0.64 0.84 0.07 0.10

9 May 17 2.16 0.88 0.69 0.99

29 May 17 0.04 0.57 0.66 0.11

15 June 17 0.62 1.32 0.13 0.05

28 June 17 0.09 2.11 0.69 0.09

12 July 17 0.94 1.36 1.52 0.08
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the first 2 weeks of cultivation. This could be the result of 
accumulated nutrients during inoculation for both groups. 
Higher levels of NH3 and NO3

– were also observed on May 
9, 2017, June 15, 2017, and June 28, 2017, and these could 
support the growth. Higher growth rates were observed at 
lower temperatures (10.6–19.2% DGR was observed when 
the temperatures were at 24–26 °C) and lower growth 
rates were observed at higher temperatures (26–32 °C), 
an effect that has been reported before for Ulva sp.45,47 
Interestingly, the growth rates were higher in the intensi-
fied growth reactors than in the extensive growth reactors 
in the same season (Fig. 5(a)). Consequently, the tumbling 
of macroalgae with air, mixing, and external water sup-
ply to the cages in the sea led to the highest yield observed 
in the entire season (Fig. 5(b) and Table 2). The highest 
yield was observed after 13 days of cultivation, on May 3, 
2017 and it was 33.72 g DW day−1 m−2 (6.74 g C day−1 m−2, 
0.33 g N day−1 m−2), or 37.79 g DW day−1 m−3. In com-
parison, the highest yield in the extensive cultivation 
from January 2017 to July 2017 was 15 g DW day−1 m−2 in 
January 2017. There was no growth from May to July in the 
cages with extensive cultivation (Fig. 5(b)), probably due to 
high temperature (see supporting information, Fig. S1). It 

Figure 5. Daily growth rates (a) and productivity (b) of Ulva in the intensified and extensive cultivation systems in the sea 
(n = 3). Minimum, maximum and average measurements are shown.

is important to note that cultivation in the cages that were 
tumbled with air, with mixing but without external water 
supply from outside the cage (Fig. 1(d)), resulted in bio-
mass loss when growth was observed in the extensive sys-
tem from January to May 2017. This implies that tumbling, 
air mixing, and external water flux, which provides nutri-
ents and colder water, play a combined role in growth-
rate intensification. It is difficult to establish the extent 
to which each component contributes to the growth-rate 
intensification due to complex interactions between the 
components, such as the reduction of photoinhibition, the 
enhanced supply of nutrients, the enhanced gas exchange 
and hydrodynamic stimulus, just to mention a few. 
Furthermore, air and biomass movement in the reactor 
might also prevent the development of damaging viruses 
or bacteria, as was shown for some on-land systems.48 The 
water supply, using airlift pumps from deeper layers, will 
also typically reduce the temperature in the reactor, work-
ing against the temperature inhibition factor. 

To shed light on some of the coupled interactions 
mentioned above, we performed a series of experi-
ments in the on-land system where the only changed 
parameter between cultivation reactors was aeration. 



© 2019 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. (2019); DOI: 10.1002/bbb

A Chemodanov et al.	 In the Field: Intensive Ulva sp. (Chlorophyta) biomass cultivation offshore

8

DW:FW ratio) and a maximum of 15 g DW day−1 m−2 in 
the non-aerated cages. The highest DGR of 65% we found 
in the literature was reported for Ulva sp. grown on ropes 
inside tanks.60

Compositional analysis of the cultivated 
Ulva sp. biomass

The ash content of the dry matter from the samples with 
the highest yields, 33.72 (g DW day−1 m−2) and 15.86 
(g DW day−1 m−2), harvested on May 3, 2017 and May 17, 
2017, from cages with intensified cultivation, was 38.47 ± 
0.01% and 37.87 ± 0.01%, respectively. This ash composi-
tion is at the lower boundary of the Ulva ashes reported in 
Mexico, where 35.8–57.6% ash was reported,61 but higher 
than ash content reported for Ulva sp. in Spain, which 
showed 11–29%.62

The harvested biomass had significantly lower protein 
content than biomass grown in laboratory conditions 
(2.9–6.2% protein in the intensified cages in the sea, 0.53–
9.08% in cages with extensive cultivation versus 33% in the 
lab). Low protein (5.9–17%) has been reported for multiple 
natural stocks of various Ulva species,63–66 suggesting that 
precise nitrogen control is required to maintain high pro-
tein content.67

The elementary composition of the biomass harvested from 
cages with intensified cultivation varied as follows during 
the entire cultivation period: C% 19.6–22.5; H% 3.7–4.6, N% 
0.65–1.4, and S% 3.54–6.74 (Table 3). It was not significantly 
different from the composition of the biomass cultivated in 
extensive cages (Table 4). These results indicate the potential 
of Ulva sp. to capture carbon and nitrogen, two important 
climate-change factors, for the mitigation of which Ulva 

The experiments in the controlled environment showed 
that under an air temperature between 21.9 °C (at night) 
and 40.53 °C (during the day), and water temperature 
between 21.6 °C (at night) and 37.4 °C (during the day), 
and maximum solar illumination intensity (outside 
the reactors) of 942 µmoles m−2 s−1, mixing by aeration 
(5.8–8.6 rpm) increased the DGR from 7.6 ± 2.6% to 29.9 
± 2.9% (P < 2.8∙10−5). These results in the controlled land-
based system showed that tumbling with air and mixing 
increased the growth rates of Ulva sp. biomass (see sup-
porting information, Fig. S2) when nutrients were availa-
ble in excess, corroborating the view that a combination of 
tumbling with air, mixing, and nutrient supply is needed 
for the intensification of growth, when other parameters, 
such as illumination and temperature, are equal.

Previous studies on the Ulva sp. cultivation offshore 
reported a maximum 17% DGR when the algae were culti-
vated downstream from fish cages and −15% upstream of 
the cages.49 Previous work also compared various methods 
for Ulva sp. growth in the on-land tank, on ropes, and 
with spray systems. Studies with Ulva sp. growth in tanks 
with tumbling reported on DGR of 10–45%,50–55 with 
high values achieved in nitrogen-rich wastewaters such as 
manure streams.56 Ulva sp. cultivation in the tumbled with 
air tanks led to high DGR in comparison with spray cul-
ture (16.9% versus 11.8%).57 A study that compared tum-
bled and not-tumbled Ulva sp. growth in tanks reported 
yields of 12.1 g DW m−2 d−1 with tumbling regimes of 12 h, 
versus 4.7 g DW m−2 d−1 without aeration.58 Additional 
research on the production of Ulva ohnoi in the intensive 
land-based system with controlled cultivation conditions 
reported 20–80 g DW m−2 day−1.59 This study showed 3.1–
33.7 g DW m−2 day−1 in the aerated offshore system (0.15 

Table 2. Ulva sp. biomass growth rates and yields. Two separate experiments were performed 
(highlighted in white and light grey) in the cage with intensification, achived with with tumbling, air mixing 
and external water exchange. FW- fresh weight, DW- dry weight.
Date Density (FW) in the cage 

with intensification
Yield in the cage with 

itensification
Growth Rate

g FW m−2 g FW m−3 gDW day−1 m−2 gDW day−1 m−3 DGR in cage with  
intensification % day−1

DGR in extensive 
cages % day−1

20 April 17  1,174a  1,315a 

3 May 17  4,096  4,590 33.72 37.79 19.2% −4.2%

17 May 17  2,482  2,781 15.88 17.79 10.6% −6.7%

29 May 17  1,000  1,120 0 0 0.0% −9.1%

15 June 17  1,165a  1,306a 

28 June 17  1,786  2,001 3.11 3.47 4.1% −5.9%

12 July 17  954  1,069 −0.3% Not measured
aStays for initial density, the rest is density at harvesting.
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by rhamnose, xylose, and uronic acid derivatives. This is 
consistent with our previous data on the same species har-
vested from the sea and cultivated in the on-shore reactor 
integrated into the building.69 Longer offshore cultiva-
tion in the cages with intensified cultivation (39 versus 18 
days) led to lower fructose, glucose, rhamnose, uronic acid 
derivatives, and xylose content (Table 4). This result is con-
sistent with our previous finding that the content of these 
sugars in acid hydrolysates was higher when cultivated in 
the controlled photobioreactor in comparison with the 
same biomass harvested from the wild stocks from the 

sp. has been investigated47 using offshore cultivation at 
6.74 g C m−2 d−1 (25 g CO2 m−2 d−1) and 0.34 g N m−2 d−1, 
at maximum growth rate achieved in this study (assum-
ing 0.15 DW:FW ratio). According to the Israel Ministry of 
Environmental Protection, the Israel’s national GHG emis-
sion reduction target for 2030 is 2.7 ton CO2 per capita (26% 
from the emissions in 2005).68 Therefore, ~0.108 km2 of the 
sea area should be allocated per capita, if Ulva sp. with inten-
sified cultivation is used to achieve these goals. 

Analysis of carbohydrate content (Tables 5 and 6) 
showed that glucose was the major carbohydrate, followed 

Table 3. Protein content and elementary composition of harvested from a tumbled with air cage Ulva 
biomass. or extensive cultivation (white). Protein was measured according to AOAC 981.10 with a 
multiplication factor of 5. CHNS shows the average of at least two technical repeats.
Harvesting date Cultivation days Protein content (%) C (%) H (%) N (%) S (%)

03 May 2017 13 5.28 19.9 4.6 1.05 6.74

17 May 2017 27 2.96 21.3 4.4 0.65 6.79

29 May 2017 39 4.64 21.3 4.1 0.98 3.54

28 June 2017 13 4.8 22.5 4.6 1.06 5.52

12 July 2017 27 6.24 19.6 3.7 1.40 3.15

Table 4. Protein content and elementary composition of harvested from an extensive cultivation. Protein 
was measured according to AOAC 981.10 with a multiplication factor of 5. CHNS shows the average of at 
least two technical repeats.
Harvesting date Cultivation days Protein content (%) C (%) H (%) N (%) S (%)

12 January 2017 14 8.81 17.59 3.94 1.76 4.79

26 January 2017 14 9.08 22.99 4.13 1.82 1.73

13 February 2017 17 8.55 17.65 3.84 1.71 4.81

28 February 2017 15 8.60 18.92 3.68 1.72 4.04

23 March 2017 14 7.07 21.81 4.21 1.41 4.93

06 April 2017 14 5.06 15.59 3.22 1.01 3.53

20 April 2017 16 3.83 20.81 4.24 0.77 4.71

03 May 2017 13 0.53 5.73 2.27 0.11 3.18

17 May 2017 14 2.62 22.81 4.41 0.52 5.84

18 May 2017 14 4.32 24.16 4.44 0.86 3.30

26 May 2017 10 6.07 19.59 4.09 1.21 5.28

29 May 2017 10 3.88 22.40 4.08 0.78 3.64

17 July 2017 14 4.71 21.89 3.93 0.94 3.55

Table 5. Monosaccharides content of the Ulva sp. biomass cultivated with intensification achieved with 
tumbling with air, mixing and external water supply (gray) or extensive cultivation (white).
Harvesting 
date

Cultivation 
days

Fructose 
(mg g−1 DW)

Galactose 
(mg g−1 DW)

Glucose 
(mg g−1 DW)

Rhamnose 
(mg g−1 DW)

Uronic acid derivatives 
(mg g−1 DW)

Xylose 
(mg g−1 DW)

03 May 2017 13 2.49 ± 0.15 0.76 ± 0.25 21.76 ± 7.84 15.70 ± 5.32 19.58 ± 9.57 13.64 ± 3.55

17 May 2017 27 0.96 ± 0.13 1.02 ± 0.55 29.42 ± 0.08 15.85 ± 0.74 15.23 ± 0.44 13.71 ± 0.34

29 May 2017 39 0.52 ± 0.03 1.80 ± 0.01 18.58 ± 0.17 9.61 ± 0.17 6.93 ± 0.70 12.47 ± 0.44

28 June 2017 13 3.33 ± 2.65 2.26 ± 0.70 39.16 ± 2.57 21.91 ± 2.57 18.05 ± 0.67 16.72 ± 2.31

12 July 2017 27 1.95 ± 0.11 3.80 ± 0.85 18.43 ± 2.59 12.47 ± 2.59 5.59 ± 0.04 9.08 ± 1.56
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Table 6. Monosaccharides content of the Ulva sp. biomass cultivated under extensive cultivation.
 Cultivation 

days
Fructose 

(mg g−1 DW)
Galactose 

(mg g−1 DW)
Glucose 

(mg g−1 DW)
Rhamnose 

(mg g−1 DW)
Uronic acid derivatives 

(mg g−1 DW)
Xylose  

(mg g−1 DW)

12 January 2017 14 0.35 ± 0.29 1.6 ± 0.42 6.67 ± 8.22 16.43 ± 4.15 67.43 ± 25.64 7.68 ± 1.89

26 January 2017 14 0.35 ± 0.04 0.31 ± 0.03 15.58 ± 1.26 7.1 ± 0.54 21.33 ± 3.84 4.97 ± 0.18

13 February 2017 17 0.44 ± 0.09 0.5 ± 0.4 7.73 ± 4.64 6 ± 3.76 29.24 ± 13.65 3.4 ± 1.58

28 February 2017 15 0.36 ± 0.07 0.24 ± 0.51 5.9 ± 6.2 11.39 ± 2.87 39.72 ± 1.42 4.96 ± 0.06

23 March 2017 14 1.01 ± 0.95 0.94 ± 0.01 23.79 ± 1.17 13.13 ± 0.03 49.77 ± 2.63 6.37 ± 0.02

06 April 2017 14 0.46 ± 0.03 0.3 ± 0.19 9.39 ± 0.93 5.42 ± 0.5 16.01 ± 0.09 3.77 ± 0.17

20 April 2017 16 0.58 ± 0.2 1.16 ± 0.04 48.02 ± 2.85 23.58 ± 0.88 71.44 ± 0.68 10.85 ± 0.11

03 May 2017 13 0.3 ± 0.1 0.09 ± 0.04 12.84 ± 5.41 3.68 ± 1.22 13.19 ± 5.67 1.93 ± 0.63

17 May 2017 14 1.05 ± 0.17 1.12 ± 0.23 32.27 ± 5.53 23.59 ± 5.22 48.52 ± 9.15 15.61 ± 2.32

18 May 2017 14 0.55 ± 0.04 1.66 ± 0.22 29.91 ± 4.12 32.2 ± 3.05 64.39 ± 2.59 16.92 ± 0.52

26 May 2017 10 0.23 ± 0.03 0.91 ± 0.01 8.07 ± 0.91 12.03 ± 0.91 29.88 ± 0.86 5.49 ± 0.09

29 May 2017 10 0.34 ± 0.03 1.01 ± 0.02 13.12 ± 1.33 7.93 ± 0.36 20.22 ± 1.43 8.91 ± 0.2

sea.69 As the total carbon content of the biomass did not 
change with cultivation time (Table 3), we suggest that, 
under offshore cultivation, the carbon is stored in fibers 
such as cellulose, which is not hydrolyzed by our protocol.

Comparison of the monosaccharide content of the 
matched biomass harvested on May 3, 2017, May 17, 2017, 
and May 29, 2017 (see supporting information, Fig. S3, 
Tables 5 and 6) shows that intensification of cultivation 
led to the significant (P < 0.5) increase in fructose content, 
and significant decrease (P < 0.5) in glucuronic, uronic, 
and other sugar acids (Fig. 6).

Energy content of Ulva sp. biomass 
cultivated with intensification

The energetic high heating value (HHV) of the dried 
biomass as fuel was 8.46 MJ kgDW

−1 (remained mois-
ture (RM%) 11.21%) for the harvest on 3 May and 
9.13 MJ kgDW

−1 (remained moisture (RM%) 13.79%) for 
the harvest on May 17. Hence, at the observed maximum, 
Ulva sp. biomass can produce 2 MJ m−2 per day or pro-
duce a maximum power density of 23 W m−2 for direct 
combustion. 

Conclusions

We tested the feasibility of the offshore cultivation of Ulva 
sp. biomass in an intensified offshore reactor, with tum-
bling and mixing with air and external water supply. This 
intensification method allowed for the production of Ulva 
sp. biomass during the period from May to July in 2017 
while there was no growth in extensive offshore systems. 
Tumbling with air, and mixing, increased the growth rate 

Figure 6. Monosaccharides content in the acid hydrolysate 
of the biomass harvested from cages with intensified and 
extensive cultivation in May 2017. (a) Concentration, (b) P 
value for comparison (Student-t) of the content between 
the two cultivation methods. n = 6 for intensified cultiva-
tion and n = 10 for extensive cultivation. Gal – galactose, 
Glu-glucose, GluA-glucuronic acid, SA-other sugar acids, 
Rha – rhamnose, Xyl – xylose, Fru – fructose, UA – uronic 
acid.



© 2019 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. (2019); DOI: 10.1002/bbb 11

In the Field: Intensive Ulva sp. (Chlorophyta) biomass cultivation offshore	 A Chemodanov et al.

of Ulva sp. in controlled, land-based systems in compari-
son with the same systems without tumbling and mixing. 
Multiple coupled mechanisms can lead to these changes, 
including a reduction in photoinhibition, enhanced nutri-
ent flux, the water, enhanced gas exchange, and hydrody-
namic stimulus. Air and biomass movement in the reac-
tor might also prevent the development of axenic zones, 
and the development of detrimental levels of viruses or 
bacteria or excretion of growth inhibiting photosynthesis 
byproducts. Water supply using airlift pumps from deeper 
layers also reduces the temperature of the reactor. Our 
findings open new directions for the design of offshore 
cultivation systems that will produce usable biomass with-
out arable land and fresh water.
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