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Abstract: Crop production systems have adopted cost-effective, sustainable and environmentally
friendly agricultural practices to improve crop yields and the quality of food derived from plants.
Approaches such as genetic selection and the creation of varieties displaying favorable traits such
as disease and drought resistance have been used in the past and continue to be used. However,
the use of biostimulants to promote plant growth has increasingly gained attention, and the market
size for biostimulants is estimated to reach USD 4.14 billion by 2025. Plant biostimulants are products
obtained from different inorganic or organic substances and microorganisms that can improve plant
growth and productivity and abate the negative effects of abiotic stresses. They include materials
such as protein hydrolysates, amino acids, humic substances, seaweed extracts and food or industrial
waste-derived compounds. Fish processing waste products have potential applications as plant
biostimulants. This review gives an overview of plant biostimulants with a focus on fish protein
hydrolysates and legislation governing the use of plant biostimulants in agriculture.
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1. Introduction

To reduce the number of toxic nitrates in the soil, the EU Council Directive of 12 December 1991
concerning the protection of waters against pollution caused by nitrates from agricultural sources
(91/676/EEC) called for a significant reduction in the amount of nitrogen-containing fertilizers used in
agriculture and horticulture. As a result, organic farming using natural preparations that improve
the general health, vitality, and growth of plants and do not pose many environmental and ecological
risks are now the preferred choice [1]. As an alternative to chemical fertilizers, bio- stimulants can be
used to stimulate plant growth and increase yields [2]. Biostimulants are products able to act on the
metabolic and enzymatic processes of plants improving productivity and crop quality. Biostimulants
may also help plants to cope with stressful environmental conditions such as drought, abiotic stress
and cold [3]. Plant biostimulants are defined as products that stimulate plant nutrition processes
independently of the product’s nutrient content, with the sole aim of improving any of the plant or
plant rhizosphere nutrient use efficiency, tolerance to abiotic stress, quality and availability of confined
nutrients in soil or rhizosphere. Biostimulants may be any mixture of substances, organic in nature from
natural or microbial sources that can improve crop conditions without causing adverse side-effects.
Enzymes, proteins, amino acids and natural stimulants such as phenolics, fulvic acids and protein
hydrolysates can be termed biostimulants. Fungi and microbes can be considered biostimulants and
species, including Trichoderma reesei and Heteroconium chaetospira and bacteria such as Rhodococcus sp.
and Enterobacter sp. are used for this purpose.
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Biostimulants are not fertilizers as they do not provide nutrients directly to plants, but they
can facilitate the acquisition of nutrients by supporting metabolic processes in soil and plants.
Biostimulants can be either plant extracts such as Rosemary or are often of animal origin. Animal
sources of biostimulants are usually hydrolysates of food by-products such as casein [4], fish waste [5]
or animal tissue [6]. They are ordinarily produced using either alkaline or chemical hydrolysis
methods [2]. Chemical fertilizers and biostimulants can cause damage to the environment and the EU
recommends that natural biostimulants will replace these in time. Biostimulants are also the preferred
option of organic farmers and informed consumers [7,8]. Within the EU, regulation (EU) 2019/1009 of
the European Parliament and of the Council of 5 June 2019 (http://data.europa.eu/eli/reg/2019/1009/oj)
governs the suitability of by-products for use as either fertilizers or biostimulants. Plant biostimulants
can be grouped on the basis of their origin, for example, humic substances (humic acids, fulvic
acids, and humins), seaweed extracts, protein hydrolysates (plant and animal origin), beneficial
microorganisms (bacteria and fungi), chitosans, silicon, and extracts from food waste or industrial
waste streams among others [9].

Food waste streams are an important precursor for biostimulant development, and biostimulants
have been developed from food waste streams, composts, manures, vermicompost, aquaculture,
and fish processing waste streams and sewage treated products [3,10]. Animal processing by-products
are ordinarily converted into protein hydrolysates using chemical or enzymatic hydrolysis for use as
biostimulants. A protein hydrolysate was generated previously from chicken feathers and used as
a biostimulant on maize [11]. Siapton® is a product developed by controlled hydrolysis of organic
substances of animal origin that is used as a foliar spray to prevent osmostress-related metabolic
changes in maize [12]. Fish protein hydrolysates are also used as biostimulants and are ordinarily
derived from fish skins and other by-products such as heads, muscle, viscera, bone, frames and roe [5].
Methods of identification of biostimulants generated from fish and animal by-products include amino
acid analysis, eco-toxicological tests and sodium dodecyl sulphate polyacrylamide gel electrophoresis.
Table 1 shows some of the commercially produced plant biostimulants from different sources that are
currently available on the market for use in horticulture.

Table 1. Commercially available plant biostimulants, their composition and application strategies [13–15].

Biostimulant Origin Active Compounds Application
Methods Plant Main Activity

C Fish

White fish/mixed
fish composition
autolysates and

hydrolysates

Peptides, amino acids Foliar, irrigation,
pre-planting

Vegetables,
fruits

Increase plant’s resistance
to insect pressure, disease
and heat or drought stress

Radifarm Commercial
formulation

Amino acids, peptides,
saponins, betaines,

polysaccharides, vitamins,
microelements

Irrigation, soil
drench, foliar
application

Fruits and
vegetables

Promotes the formation of
an extensive root system

by speeding up the
elongation of lateral and

adventitious roots

Megafol Commercial
formulation

Amino acids, betaines,
proteins, vitamins, auxin,

gibberellin, cytokine

Irrigation, soil
drench, foliar
application

Fruits and
vegetables

Promotes balanced
vegetative development

and productivity,
and plant resistance to

stress (frost, root asphyxia,
weeding, hail)

Biozyme Ascophyllum
nodosum

Algae extract, plant
hormones,

chelated micronutrients

Irrigation, foliar,
pre-planting,
soil drench

Fruits,
vegetables,
legumes,

Increase nutrient uptake
and activity of chlorophyll

and photosynthesis

Algreen Seaweed

Seaweed extract, plant
hormones, vitamins,

free amino acids,
alginic acid

Promotes growth and
yield parameters, enhance

vitamin C and dry
matter content

http://data.europa.eu/eli/reg/2019/1009/oj
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Table 1. Cont.

Biostimulant Origin Active Compounds Application
Methods Plant Main Activity

BioRoot
Plant derived

protein
hydrolysates

Plant and mineral-derived
organic acids and humates,
alfalfa and soybean meal,

brewer’s yeast,
K-sulfate,

rock phosphate, sea kelp

Irrigation, foliar,
soil drench

Fruits and
vegetables

Increase rooting ability
and chlorophyll and

protein contents

Kelpak Ecklonia
maxima, Seaweed extract

Drip irrigation, Soil
drench, Seed

treatment, foliar

Fruits and
vegetables

Stimulate plant’s natural
hormones, root initiation

and germination

Biplantol
Universal

Commercial
formulation

Macro-and
microelements,

germanium, uronic acids,
medicinal herbs,

worm humus

Foliar, soil drench
Fruits,

vegetables,
flowers

Resistance to fungal
diseases and insect pests

Grow-plex SP Humic acids Humic acids Irrigation, foliar Fruits,
vegetables

Stimulate soil bacteria,
root and shoot growth,
iron and zinc uptake

Tablet Microorganism
Rhizophagus intraradices

and Trychoderma
atroviride spores

Soil drench vegetables

Stimulate root system
architecture (higher total
root length and surface),

improve chlorophyll
synthesis and increase
proline accumulation

Ergonfill
Animal derived

protein
hydrolysates

Animal protein
hydrolysates, cysteine,

folic acid, keratin
derivatives

Foliar Fruits and
vegetables

Promotes indolacetic acid
and chlorophyll synthesis,

improves translocation
and chelation of macro

and trace elements

Benefit Commercial
formulation

Amino acids, nucleotides,
free enzymatic proteins,

vitamins

Irrigation, foliar,
soil drench

Fruits and
vegetables

Stimulates cell division
and increase in the

number of cells per fruit

The active agents of protein hydrolysates are fat free amino acids including aspartic acid,
hydroxyproline, threonine, serine, glutamic acid, proline, glycine, alanine, methionine, isoleucine,
Leucine, tyrosine, melatonin, organic matter, short-chain peptides, and proteins [5]. Fish hydrolysates
are proven to improve the utilization of nutrients by the plants and induce morphological changes
in root architecture [16]. They may also have an anti-drought effect and may stimulate the growth
and activity of beneficial microbes and improve antioxidant activity. The biological effects of these
mechanisms of action are better root growth and development, increased root and leaf growth,
induction of flowering and improved fruit setting, and reduced fruit drop [10]. The value of the
European biostimulant market was USD 0.60 billion in 2018 and the US is the biggest consumer and
producer of biostimulants. The global market for biostimulants is set to grow to USD 2.91 billion by
2021, with a compound annual growth rate of 10.4% from 2016–2021 [10].

2. Protein Hydrolysates

Diverse agricultural activities generate organic waste, which has the potential for further processing
to produce biostimulants. The demand for biostimulants for use in modern agriculture has been
driven in part by the need for fertilization with compounds of natural origin that are produced in an
eco-friendly and sustainable manner [3]. In addition to being one of the fastest-growing animal food
production systems worldwide, aquaculture is also becoming the main source of aquatic animal food
for human consumption [17]. However, large quantities of fish by-products are also obtained from
these processing streams. For example, over 60% of fish biomass, including head, skin, bones, tail, fins,
viscera and whole fish rejects ends up as part of the fish processing waste stream [5]. Furthermore,
fish processing operations produce large quantities of wastewater which contains varying degrees of
organic contaminants and requires expensive processing procedures before being discarded. Only
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about 30% of the 91 million tons of fish harvested every year is transformed into fishmeal. Possibly
more than 50% of the remaining fish tissue is processing waste and not used as food. The EU
contributes approximately 5.2 million tons of discards per year [18]. As a result, this may cause
pollution if improperly disposed of in the environment. Since most fish ‘waste’ consists of a significant
amount of protein and fat [19], recycling by composting may constitute an important resource for
biostimulant production. To facilitate the recovery of essential nutrients, fish processing by-products
can be transformed into value-added products such as proteins, gelatin, oils, amino acids, minerals,
hydrolysates and peptides through chemical or enzymatic hydrolytic means.

Fish skin is a very rich source of collagen and gelatin which can be hydrolyzed to gelatin
hydrolysates and a variety of studies have been conducted to demonstrate the potential of fish skin
from different species as a source of protein hydrolysates [5]. Wasswa et al. (2007) reported protein
hydrolysate production from skin of grass carp fish using Alcalase [20]. Furthermore, Yin et al. (2010)
reported the hydrolysis of catfish skin and subsequently described the rheological and functional
properties of the generated protein hydrolysate [21]. In another study, Sampath Kumar et al. (2011)
reported on the generation of protein hydrolysates from horse mackerel and croaker, by using pepsin,
trypsin and α-chymotrypsin [22]. Animal-derived gelatin has been applied in agriculture as a plant
biostimulant [23], as a result, fish skin as a waste product of fish processing with a high content of
collagen can be hydrolyzed into gelatin and may be used for this purpose also. Fish processing also
produces a large amount of fish heads as processing by-product waste. These can also be converted
into protein hydrolysates using enzymatic hydrolysis. For example, Gbogouri et al. (2004) hydrolyzed
salmon heads using Alcalase at optimum temperature, substrate: enzyme ratio and pH to produce
various hydrolysates using a response surface hydrolysis approach [24]. Furthermore, Sathivel et al.
(2003) showed significant hydrolysis of the head, whole fish, body and gonad of herring fish using
Alcalase as the hydrolyzing enzyme with incubation for 75 minutes and described the functional
properties of the produced protein hydrolysates [25]. Fish backbone for example has approximately 30%
protein. As a result, several fish bone hydrolysis studies have been successfully carried out. A variety
of studies have also demonstrated the hydrolysis of fish bone and frame into protein hydrolysates. Je
et al. (2007) reported the protein hydrolysates from tuna backbone protein using different proteases
such as Alcalase, α-chymotrypsin, Neutrase, papain, pepsin and trypsin [26]. In another study, Nazeer
et al. (2011) reported hydrolysates from the backbones of Seela and ribbon fish using papain, trypsin
and pepsin [27].

Similarly, fish frame—which is normally discarded during processing—can be hydrolyzed into
protein hydrolysates. Liaset et al. (2000) used the industrial enzymes Neutrase, Alcalase and pepsin
over a range of temperatures and times to hydrolyze Atlantic cod and Atlantic salmon fish frames
without heads [28]. Hou et al. (2011b) successfully hydrolysed Alaska pollock frame by using Alcalase,
Flavourzyme, acid protease, Protamex, alkaline protease, trypsin, MEAP, neutral protease, bromelain
and papain commercial proteases [29]. Fish liver and eggs have also been reported as sources of protein
hydrolysates. Chalamaiah et al. (2010) reported protein hydrolysates from ray-finned fish eggs using
Alcalase and papain [30]. In another study, Ahn et al. (2010) reported protein hydrolysates from Tuna
liver by protease hydrolysis using various proteases such as Alcalase, Neutrase and Protamex [31].
Several commercial products from fish protein hydrolysates mentioned above are available in the
market. These include products such as custom collagen® utilized by the pharmaceutical and cosmetic
industry, hydrolyzed fish collagen type 1 capsules used in therapeutics, Levenorm® antihypertensive
capsules, Norland hydrolyzed fish collagen with pharmaceutical and food application, Protizen®

powder with anti-stress effects and Seagest™ capsules for dietary supplementation [32].
Enzymatic hydrolysis, using enzymes such as alcalase, papain, pepsin, trypsin, chymotrypsin,

pancreatin, flavourzyme, pronase, neutrase, protamex, bromelain, cryotin F, protease N, protease A,
orientase, thermolysin, and validase, is the most preferred method during the production of bioactive
hydrolysates [5]. The production of hydrolysates via enzymatic hydrolysis occurs under controlled
conditions of pH and temperatures and has been shown to have several advantages compared to
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chemical hydrolysis particularly with regards to the quality, bioactivity, and bioavailability of the end
product [33,34]. Hydrolysis breaks down larger proteins into smaller soluble peptide chains containing
2–20 amino acids. Protein hydrolysates are classified according to whether they are of animal- or plant
origin. Animal-origin protein hydrolysates include leather by-products, blood meal, fish by-products,
chicken feathers and casein, whereas plant-origin protein hydrolysates include legume seeds, alfalfa
hay and vegetable by-products [35].

Fish hydrolysates have shown excellent physicochemical and functional properties compared to
their synthetic substitutes. Properties such as anti-oxidative activity [36], anti-hypertensive activity [37],
antimicrobial activity [38] and anti-anemia activity [39] have been reported in the literature. Recently,
researchers have developed a key interest in the anti-proliferative property of fish hydrolysates.
Furthermore, fish protein hydrolysates have found possible application on a wide range of agriculture
crops as biostimulants [40]. Protein hydrolysates as biostimulants are supplied as liquid extracts,
soluble powders, and granular forms, and can be applied to the roots or as foliar sprays [35]. Globally,
protein hydrolysates for agricultural use are produced by companies in Italy, Spain, the United States,
China and India as well as Ireland, and were born from the leather and meat industries as an approach
to valorize by-products.

2.1. Fish Hydrolysates as Plant Biostimulants

Fish by-products are enriched in proteins, fat, and amino acids following protease hydrolysis.
Furthermore, fish by-products contain antioxidants, which are often suitable for food or feed applications
depending on the method of storage and handling of the by-products [41]. The above-mentioned
nutritional qualities make fish protein hydrolysates excellent candidates for use in organic agriculture
as biostimulants like other animal-derived protein hydrolysates. Fish-derived protein hydrolysates
as biostimulants were found previously to increase leaf numbers significantly, as well as the stem
diameter, shoot and, root mass and succulence of a variety of plants. Additionally, the biostimulants
enhanced leaf chlorophyll content, photosynthesis, and gas exchange and have the potential to be
used for the sustainable production of lettuce [42]. Short-term (30-days after transplanting) effects of
fish-derived protein hydrolysates, applied as a drench (3 mL·L−1 at 0, 14, and 24 d after transplanting),
on soil properties and lettuce (Lactuca sativa L.) growth and physiology were evaluated in a growth
chamber study. After harvesting, soil treated with protein hydrolysates had higher C/N ratio and
content of K and Fe, lower pH values, electrical conductivity, water holding capacity and cation
exchange capacity, and lower contents of NO3-N, P, Mg, SO4, Cu, Mn, B and Na, than soil of the control.
Application of protein hydrolysates increased lettuce leaf numbers, stem diameter, shoot fresh and
dry mass, and root dry mass [42]. It also increased leaf relative water content and succulence but did
not affect specific leaf area. Protein hydrolysates increased leaf chlorophyll content, photosynthetic
rate, stomatal conductance and transpiration, although they did not alter chlorophyll fluorescence.
All results indicated that plant biostimulants (protein hydrolysates) from fish are effective tools
for the sustainable production of lettuce [42]. In another study, Bhaskar et al. (2008) reported the
enzymatic hydrolysis of visceral waste protein from Catla catla (Major south Asian Carp fish) using
the Alcalase® enzyme from Bacillus licheniformis [43]. The protein hydrolysate contained arginine,
asparagine/aspartate, glutamine/glutamate, glycine, alanine, and proline/hydroxyproline. Kechaou et
al. (2009) also reported a protein hydrolysate obtained from fish viscera (Sepia officinalis and Sardina
pilchardus) using commercial enzymes from microorganisms, such as Alcalase® and Flavourzyme®

(Novozymes/DK) [44]. According to the free amino acid composition, the results also indicated the
potential use of the hydrolysate as a supplement for use in animal diets [44].

The growth of several plants is enhanced by the application of protein hydrolysates. Previously
application of protein hydrolysates was shown to improve the growth of lettuce [37], winter wheat [45],
tomato [46], corn [47] and peppers [48]. The application of ready-for-uptake amino acids in the
form of protein hydrolysates allows plants to save energy on amino acid synthesis and increases
the pace of their reconstruction, particularly during critical times of plant development such as after
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transplantation, during the flowering period and during times of climatic stress or plant diseases [49].
Amino acids can also act as chelators of metal ions; completely chelated mineral ions are neutralised,
which can accelerate metal ions absorption and transport within the plant and thus enhance plant
growth. Furthermore, increased growth of plants in the presence of biostimulants can be attributed
to improved nutrient uptake, metabolism resulting from increases in soil microbial activity, root
length, density and number of lateral roots, and increases in activities of enzymes involved in nutrient
metabolism [35,50].

However, other studies have shown that protein hydrolysates may have negative or no positive
effects on plant growth. For example, Lisiecka and co-workers showed that the application of
an animal-derived biostimulant did not have a beneficial influence on the number of strawberry
runners, their length, and their diameter. Furthermore, the biostimulant did not increase the number
of strawberry daughter plants, their crown diameter as well as the number of leaves but instead
decreased the weight of the strawberry plants significantly [51]. These contradictory data reveal
that the beneficial effects of protein hydrolysates on plants are dependent on the sources (plant or
animal origin) and preparation methods. Moreover, variations among studies could be attributed to
the different application methods; plant species hydrolysates are applied to, and/or growth control
conditions used.

Several protein hydrolysates of plant and animal origins have been made commercially available.
C FISH is an example of a commercial protein hydrolysate that is derived from fish and is used as a
plant biostimulant in Ireland (http://www.cfish.ie/plant-biostimulants/). Protein hydrolysates have
shown a variable but significant increase in the yield and quality of agricultural and horticultural crops
depending on the source [52]. Table 2 shows some examples of animal-derived protein hydrolysates
whose potential as plant biostimulants has been studied. Corte et al. (2014) assessed the safety of
hydrolysed proteins of animal-origin using yeast and plant models and concluded that they were no
genotoxicity, ecotoxicity, or phytotoxicity observed, thus making them safe for use [53]. Fish protein
hydrolysates contain many bioactive peptides and amino acids that have been shown to have human
health and animal feed supplementation benefits (Table 3). In a related manner, these bioactive peptides
may have positive effects on plants when applied as biostimulants. The peptide and amino acid
composition of fish hydrolysates per 100 g protein is higher than that of casein, Alfalfa hay, chicken
feathers and soya bean meal, but less than that of blood meal and bovine collagen [35] and these protein
sources have been applied in horticulture as plant biostimulants. Considering the above-mentioned
protein comparison and nutraceutical properties of fish protein hydrolysates, they potentially provide
an excellent opportunity for widespread use in horticulture as plant biostimulants. Despite the
aforementioned report, the EU has banned the application of animal-derived protein hydrolysates
on the edible parts of organic crops including fish protein hydrolysates and fish meal, through the
Commission Implementing Regulation (EU) no 354/2014 with regard to organic production, labeling
and control (http://data.europa.eu/eli/reg_impl/2014/354/oj). However, animal-derived biostimulants
can still be applied to no-edible parts of horticulture crops such as seeds during planting, roots and
leaves to equally exert their biostimulant effect.

Table 2. Examples of protein hydrolysates from different fish and animal sources and their application
as plant biostimulants.

Source Plant Growth
Media

Method of
Application

Bioactive
Compounds Biostimulant Activity Reference

Fish-derived
protein

hydrolysate
Lettuce Field soil

Exogenous
(during

watering)

Peptides,
amino acids

Increased leaf number
and root biomass

Enhanced chlorophyll
content, photosynthetic rate

[42]

Commercial
amino acids
preparation

Lettuce Field soil Foliar Glycine and
glutamine

Increased yield, leaf chlorophyll
and vitamin C content [54]

http://www.cfish.ie/plant-biostimulants/
http://data.europa.eu/eli/reg_impl/2014/354/oj
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Table 2. Cont.

Source Plant Growth
Media

Method of
Application

Bioactive
Compounds Biostimulant Activity Reference

Meat flour protein
hydrolysate Maize Hoagland

solution

Seedlings
immersed in

solution

Small
peptides and
amino acids

Stimulation of root and leaf
biomass Induced nitrate

conversion to organic nitrogen
Stimulate efficient nutrient

utilization by plants

[47]

Commercial
preparation of
chicken feather

hydrolysate

Wheat Field soil Foliar
Short

peptides and
amino acids

Increased yield and nutrient
content of grains [45]

Chicken feather
hydrolysates Maize Field soil Foliar Peptides and

amino acids

Increased micro-
and macronutrient

concentration of leaves
Increased yield and grain

protein content

[55]

Commercial
amino acid
preparation

Coriander
Hoagland
nutrient
solution

Dissolved
into growth

media
Glycine

Increased growth of
roots and shoots

Increased micronutrient
content of leaves

[56]

Fe-amino acid
chelates

preparation
Tomato Nutrient

solution

Dissolved
into nutrient

solution

Arginine,
glycine and

histidine

Increased uptake of Fe and
improved root and shoot growth [57]

Commercial
animal-derived
calcium protein

hydrolysate

Rojo Brillante Field soil Irrigation

Peptides,
amino acids
and metal
elements

Lower chloride uptake and
reduction in leaf necrosis [58]

Commercial
animal-derived

amino acids
product

Tomato Nutrient
solution

Foliar and
root

application
Amino acids No effects on Iron nutrition

Caused severe plant depression
[59]
[60]

Commercial
preparation of

amino acids
and peptides

Passion fruit
Commercial

growing
medium

Foliar Amino acids
and peptides

Promotes the photosynthetic
process in plants

Improved
transplanting successes

[61]

Animal
derived gelatin

Cucumber,
pepper, broccoli,
tomato, arugula,

and field corn

Field soil
Exogenous
(adjacent
to seeds)

Amino acids
and peptides

Increased shoot dry weight
Increased root N assimilation [23]

Table 3. Examples of fish protein hydrolysates used in animal feed supplementation and human health.

Protein
Hydrolysate Source Hydrolysis Method Bioactive

Compounds Bioactivity Reference

Pollock Alcalase and
flavourzyme Short peptides Growth by growth

hormone stimulation [62]

Pollock Chemical (formic acid)
and Enzymatic Short peptides Induce immune-modulatory

effects enhancing survival [63]

Commercial fish
protein hydrolysate Enzymatic

Glutamic acid,
other amino acids

and peptides

Contain opioid-like
compounds that may
have anti-stress effects

[64]

Barbel Alcalase Short peptides
Could be used as
antimicrobials or

antibiotic adjuvants
[65]

Half-Fin anchovy Enzymatic Bioactive peptides Antibacterial activity [66]

Pacific hake Flavourzyme Amino acids
and peptides Cryoprotectant [67]

Catshark Enzyme Peptides Emulsifying [68]

Shark
Capelin Alcalase Short peptides Foaming [69]
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Table 3. Cont.

Protein
Hydrolysate Source Hydrolysis Method Bioactive

Compounds Bioactivity Reference

Salmon Enzymes (Alcalase,
Flavourzyme, Corolase)

Peptides and
amino acids Water binding [70]

Sardine
Tuna

Enzymes
Alcalase, neutrase,

papain, pepsin

Peptides and
amino acids Antioxidative [71]

[72]

Tuna Alcalase, neutrase,
Protamex Peptides Antihypertensive

ACE-inhibitory [73]

Yellow fin tuna Protamex Lower molecular
peptides Antimicrobial [74]

Slender lizard fish Papain Peptides Antianemia [39]

Cod and Saithe
fish meal Protamex Bioactive peptides ACE inhibitory [75]

2.2. Individual Amino Acids

Individual amino acids from fish can stimulate plant growth. There is considerable evidence that
the exogenous application of structural and non-structural amino acids such as glutamate, proline,
histidine and taurine can provide protection to the plant from environmental stresses or play a role in
metabolic signaling by regulating nitrogen acquisition by roots [76,77]. Specific effects of individual
amino acid on plants are similar in many respects to those describe for protein hydrolysates. Amino
acids have been shown to increase the uptake of nutrients by plants and to increase yields. For example,
the product Amino16®, a protein hydrolysate containing 11.3% L-amino acids increased tomato yields
compared to a control [78].

In other studies, by Walch-Liu et al. [79,80], the external application of L-glutamate on
Arabidopsis thaliana plants showed that it can act as an exogenous signal to modulate root growth
and branching [79,80]. Moreover, proline, betaine and their derivatives and precursors have also
been shown to stimulate plant defenses to biotic and abiotic stress [81]. These amino acids act as
osmo-protectants that stabilize proteins, enzymes and membranes against denaturing which is caused
by high salt concentrations and non-physiological temperatures. Additionally, arginine has been
shown to play an important role in nitrogen storage and transport in plants especially during abiotic
and biotic stress conditions [82]. Amino acids can also decrease plant toxicity by heavy metals mostly
by acting as metal chelators. There is substantial evidence that asparagine, glutamine and cysteine are
important in Zn, Ni, Cu, As and Cd chelation [83,84].

3. Humic Substances

Humic substances are naturally occurring organic compounds that are produced from the
degradation of plant material from terrestrial or marine sources and constitute a large reservoir of
organic N and C. These substances are categorized into three groups based on their solubility at specific
pH values. Humic acids are soluble at higher pH but insoluble at pH values less than 2. Fulvic acids
are soluble at all pH values whereas humin is insoluble at any pH [85]. It has been shown that humic
substances can enhance plant root growth and development by stimulating the uptake of nutrients,
water and enhancing tolerance to environmental stress [86]. Humic substances have oxygen-, nitrogen-
and Sulphur-containing functional groups which allow them to make stable complexes with metal
micronutrients such as Fe, thereby facilitating the maintenance of micronutrients in their bioavailable
forms [87].

In the same way, humic substances can also promote plant growth through the induction of carbon
and nitrogen metabolism [88]. A variety of studies on the application of humic substances on several
fruit crops, ornamental plants, and vegetables have been reported in the literature. To highlight a
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few, Ibrahim and Ramadan. (2015) [89] showed that the application of humic acids on common beans
increased yield by 25–35%. In another study, Bettoni et al. (2016) showed that the application of humic
substances on onion increased fresh root weight by 42–102% [90]. In contrast, Hartz and Bottoms.
(2010) concluded that humic substances had no positive effects on nutrient uptake or productivity of
vegetable crops [91].

4. Seaweed Extracts

Seaweeds form an integral part of coastal marine ecosystems and include a vast group of
macroscopic, multicellular marine algae that are common inhabitants of the coastal regions of the
world’s oceans. Macroalgae are broadly classified into brown, red, and green algae and are an important
source of organic matter and fertilizer nutrients [92]. Several commercial seaweed extract products
are available on the market for use in horticulture and agriculture and numerous studies have shown
that seaweeds extracts can improve plant growth, productivity, yield, resistance to disease-causing
microorganisms, abiotic stress tolerance and photosynthetic activity [93]. Literature highlights several
studies in which seaweed extracts, and whole seaweed biomass or seaweed meal, were applied
exogenically to plants to evaluate their biostimulant effects. For example, Carvalho et al. (2013)
showed that seaweeds extract increased germination in bean plants [94], whereas Abdel-Mawgoud
et al. (2010) showed that seaweeds extracts increase the yield of watermelon [95]. Seaweed extracts
application has also been shown to enhance the shelf life of spinach in addition to improving flavonoid
synthesis and nutritional quality [96,97]. The growth effects of seaweed extracts are believed to be due
to complexes of carbohydrates, minerals, and trace elements as well as growth regulatory compounds
such as phytohormones contained in seaweeds [98].

5. Microorganisms

Microorganisms such as bacteria, yeast, filamentous fungi, and micro-algae have been shown to
have biostimulant activity. Arbuscular mycorrhizal fungi have many symbiosis-associated benefits
to plants such as efficient nutrient use, water balance, biotic, and abiotic stress protection of plants,
and as a result, it has been used as a plant biostimulant [99]. Arbuscular mycorrhizal fungi-based
products have been applied to plants to promote nutrition efficiency by absorbing and translocating
mineral nutrients beyond the depletion zones of plant rhizosphere and induce changes in secondary
metabolism. Additionally, these products also increase tolerance to stress, crop yield, product quality,
and influence the phytohormone balance of host plants, thereby influencing plant development [16,100].
Trichoderma-based products have received attention as biostimulants due to their capacity to control
phytopathogenic fungi. Phytostimulation by Trichoderma involves the release into the rhizosphere
of auxins, small peptides, volatiles and other active metabolites, which promote root branching and
nutrient uptake, and ultimately enhancing growth, development and adaptation to abiotic stress [101].
Plant growth-promoting rhizobacteria have been used in horticulture to promote plant growth as a
biostimulant. Its mode of action includes improvement in the availability of nutrients, the production
of volatile organic compounds, hormone release and hormonal changes within plants, and the
enhancement of tolerance to abiotic stresses [102]. An example includes the exogenous application of
Rhizobium rubi to broccoli, which increased yield, plant weight, head diameter, chlorophyll content,
macronutrient, and micronutrient uptake [103].

6. Production, Composition and Quality Control of Commercial Biostimulants

A wide variety of technologies are used in the production and preparation of biostimulants
both alone and in combinations. These include chemical and enzymatic hydrolysis, extraction,
cultivation, fermentation, high pressure cell rupture and processing among many others [10]. However,
many manufacturers tend to not disclose biostimulant production technologies used to protect
their commercial secret [104]. Depending on the manufacturing conditions and treatments used in
biostimulant production, some commercial biostimulants may contain compounds that are not initially
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present in the raw material. Thus, commercial biostimulants often marketed as equivalent products,
may differ considerably in composition and efficiency [105]. Biostimulants contain both primary
metabolites such as amino acids, sugars, nucleotides, and lipids and secondary metabolites such as
aromatic amino acids, phenolic compounds, terpenoids/isoprenoids, alkaloids, and glucosinolates [106].
The presence of secondary metabolites is highly dependent on the raw material used in the production
of the biostimulant. In most cases, biostimulants are composed of multiple components such as plant
hormones or hormone-like substances, amino acids, betaines, peptides, proteins, sugars (carbohydrates,
oligo-, and polysaccharides), aminopolysaccharides, lipids, vitamins, nucleotides or nucleosides, humic
substances, beneficial elements, phenolic compounds, furostanol glycosides, and sterols [10].

A variety of other compounds that are possibly present in biostimulant products have not yet
been characterized and still many others are not known whether they retain their activity following
processing during production. In order to maintain and ensure consistence in biostimulant product
quality, many methods are used to qualitatively and quantitively analyze the compounds present
in commercial biostimulants products [10]. These methods include amino acid analysis, bioassays,
ecotoxicological tests, Fourier transform infrared spectroscopy (FTIR), gas chromatography coupled
with mass spectrometry (GC/MS), sodium dodecyl sulphate polyacrylamide gel electrophoresis
(SDS PAGE), 13C NMR, 1H NMR, atmospheric pressure chemical ionization-mass spectrometry
(APCI-MS), cross-polarization magic angle spinning (CP/MAS), (CPMAS)-13C-NMR, diffuse-reflectance
infrared Fourier transform spectroscopy (DRIFT), electronic microscopy, elemental analysis, high
performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS), pyrolysis-gas
chromatography-mass spectrometry, UV–vis and ELISA [107]. However, maintaining the consistence
in the quality of biostimulant products remains challenging.

Fish protein hydrolysate for use as plant biostimulants or for other uses is produced either as the
liquid form which contains up to 90% moisture or as a dry form. The dry form is usually preferred due
to its stability during long-term storage and easier transport, however, removing large amounts of
water during the production of dried fish protein hydrolysates can be difficult and very costly [108].
The manufacture of fish protein hydrolysates often begins with the collection of raw materials, mainly
fish or fish processing left-over products. This is followed by solubilization with water typically in the
ration of 1:1 and a hydrolysis step in metallic tanks called hydrolysators. Hydrolysis could either be
chemical (acid or alkali) or enzymatic (commercial or fish indigenous proteases) hydrolysis. The main
aim of hydrolysis is to extract fish proteins into low molecular weight peptides and individual amino
acids [109]. The temperature and time used in hydrolyzation is dependent on the type of hydrolysis,
the nature of the raw material, the chemicals used and the nature of the final product and its intended
use. When the intended degree of hydrolyzation is reached, the process of hydrolyzation is terminated
chemically or by adjusting the temperature [110].

Hydrolyzation is followed by a dehydration process which encompasses many other pre-drying
treatments. Firstly, the hydrolyzed mixture is purified by the removal of insoluble and fat fractions via
centrifugation and plate and frame filtration. Fish oil fraction is reduced to a final concentration of
0.5% to avoid undesirable fat oxidation processes in the final product [111]. Further fractionation or
concentration of the recovered hydrolyzed fish proteins is achieved by micro-, ultra- and nano-filtration.
Membrane filtration is particularly useful tool for obtaining bioactive peptides from fish protein
hydrolysates [112]. Filtration is followed by a concentration step in dryers, the protein hydrolysate
solution can be concentrated up to 50% solids [113]. Finally, steps of fish protein hydrolysate include
drying, packaging and storage/transport. The type of drying depends on the availability of equipment
and energy savings. Usually, spray- and freeze-drying techniques are used, although in some cases
roller drum drying can be a method of choice for drying [108]. Fish protein hydrolysates are usually
packaged and stored in a dry place at 4 ◦C before distribution.
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7. Plant Biostimulants’ Mode of Action

The mode action of biostimulants ranges from activation of nitrogen metabolism or phosphorus
release from soils to the stimulation of root growth and enhanced plant establishment as detailed in the
above sections [10]. However, in many cases the mode of action of biostimulants is not known, causing
disputes over the legitimacy of commercialized biostimulant products [114]. Biostimulants enhance
nutrient uptake and assimilation by plants. This is often attributed to the capacity of biostimulants to
increase the activity of soil both microbiologically and enzymatically and to alter the root structure and
change the solubility and transportability of micronutrients [35,47]. Plant biostimulants may increase
the amount of nutrients available to plants by increasing soil cation exchange via nitrogen provision
and enhancing solubility of soil nutrients [115]. Some biostimulants make complexes with insoluble
elements such as Fe and make them available for plants. Humic compounds lower the pH of soil and
root surface by increasing the activity of plasma membrane H+-ATPase which releases H+ into the soil,
lower soil pH enhances the availability and uptake of nutrients [116].

As discussed in the previous sections, protein hydrolysates are an important group of plant
biostimulants. Fish protein hydrolysates are a mixture of oligopeptides, polypeptides and amino
acids that can be applied as foliar sprays or dosed into the soil near the plant’s roots [35]. In addition
to enhancing soil properties like respiration, protein hydrolysates act as growth stimulants for soil
microorganisms that can utilize them as easy source of carbon and nitrogen. Protein hydrolysates
can also complex and chelate soil micro- and macronutrients such as Fe so that these become more
accessible to plants [13]. In a study by Trevisan et al (2017), a novel biostimulant APR (collagen
derived protein hydrolysate), showed a significant enhancement of the dry weight of both roots and
root/shoot ratio and mRNA-Sequencing analysis revealed transcriptional changes in root of maize
seedlings [117]. In a follow up study, Trevisan et al. (2019) elucidated the mechanism of action involved
in the biostimulant effect of APR® on maize seedlings under abiotic stress. The most significant effect
of APR® on growth re-establishment was observed for roots, which are the main target for hypoxia,
salt and nutrient deprivation stresses [118]. Additionally, the study showed a marked regulation of the
transcription of genes encoding members of the high affinity nitrate transport system (HATS, NRT2 and
NAR genes), which was particularly relevant in condition of abiotic stresses. The study also showed
that APR® might preventively prepare plants to oxidative stresses by the regulation of ROS signaling
genes, in this study SOD1A gene was clearly regulated in the presence of stress and APR. In another
study by Wilson et al. (2015), gelatin capsules were applied in soil near cucumber seeds and caused the
increase in fresh and dry weight biomass, leaf area and nitrogen content of 2-week old plants. These
improvements were credited to an upregulation of both amino acids and N transporter genes and the
xenobiotic detoxification system [119].

8. Regulation of Plant Biostimulants in Europe and USA

The regulation of biostimulants is generally very complicated and, until recently, remained
in search of an official identity. This is mainly due to the lack of a formal and precise definition
and agreement on what encompasses a biostimulant among the different regulatory bodies [16].
There are currently two ways in which biostimulants are introduced in the market in Europe, these
include either following national regulations on fertilizers or the European pesticides law, which
combines both supranational and national provisions for introducing plant protection products on the
market. The EC regulation No 1107/2009 on plant protection products is applicable to all categories
of biostimulants in Europe. As a result, synthetic and natural substances (including botanicals and
basic substances as mentioned before), and microorganisms, are all covered by this regulation due to
their non-nutrient stimulation of plant growth (http://data.europa.eu/eli/reg/2009/1107/oj ). All plant
growth regulators and herbicide safeners, which are substances that interact with the physiology of
the plant, even though they do not protect the plant against pests or diseases, have been registered
under the EC regulation No 1107/2009 until recently. Due to the growing concerns pertaining to the
process and the cost of registering a plant protection product on the European market, biostimulants

http://data.europa.eu/eli/reg/2009/1107/oj
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can be alternatively regulated under the EC fertilizers regulation (regulation (EC) No 2003/2003)
(http://data.europa.eu/eli/reg/2003/2003/oj).

However, in 2019, the European Commission established regulations that state which types of
bio-products can be used in organic farming under the fertilizing products regulation (EU) 2019/1009.
Fertilizing products include fertilizers as well as other categories of products such as biostimulants
and growing media (http://data.europa.eu/eli/reg/2019/1009/oj). The Fertilizing Products Regulation,
which fully applies from dates subsequent to the 16th of July 2022, will provide common rules
on safety, quality, and labeling requirements for all fertilizing products to be traded freely across
the EU. It will open the market for products, which are not currently covered by harmonization
rules, such as organic and organo-mineral fertilizers, soil improvers, inhibitors, plant biostimulants,
growing media or blends. Among some of the materials consisting of EU fertilizing products are
by-products within the meaning of the Waste Framework Directive (Directive 2008/98/EC). This
Directive lays down measures to protect the environment and human health by preventing or reducing
the generation of waste, the adverse impacts of the generation and management of waste and by
reducing overall impacts of resource use and improving the efficiency of such use, which are crucial
for the transition to a circular economy and for guaranteeing the Union’s long-term competitiveness
(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02008L0098-20180705 ).

The European Union (EU) Fertilizing Products Regulation (EU, regulation (EU) 2019/1009)
proposes a claim-based definition of biostimulants, stipulating that “plant biostimulant” means a
product stimulating plant nutrition processes independently of the product’s nutrient content, with
the aim of improving one or more of the following characteristics of the plant: (1) nutrient use
efficiency, (2) tolerance to abiotic stress, (3) crop quality traits, or (4) availability of confined nutrients
in the soil and rhizosphere [120]. The future regulation also specifies that a plant biostimulant
“shall have the effects that are claimed on the label for the plants specified thereon.” This creates an
onus for manufacturers to demonstrate to regulators and customers that product claims are justified.
Consequently, the justification of the agronomic claim of a given plant biostimulant will be an important
element to allow it to be placed on the EU market. The European Biostimulant Industry Council
(EBIC) proposes some general guiding principles to follow when justifying plant biostimulant claims.
These principles are expected to be incorporated into harmonized European standards that are being
developed by the European Committee for Standardization (CEN) to support the implementation of
the regulation.

In order to support a biostimulant claim, published literature evidence can be provided to
demonstrate product’s characteristics such as mode of action if it is of acceptable quality. However,
synergistic effects of compounds that may occur in a proposed product with biostimulant effects means
that literature evidence alone may not be enough [121]. As a result, experimental data can be used to
complement literature evidence with field trials providing essential information about the biostimulant
where possible. Furthermore, the net agricultural benefit after considering both the positive and
negative effects of the biostimulant should be large enough to justify its use. Lastly, general guidelines
for conducting trials or assays for biostimulants are available and must cover components that include
the aim of the trial series, statistical analysis and trial design, trial conditions, design and lay-out of
trials, control data, application of treatments, and mode of assessment [120].

In the US, the biostimulant market has grown exponentially over the past decade and, according to
a new report by Fortune business insights, the global biostimulant size market size is projected to reach
USD 5.69 Billion by the end of 2026 [122]. Like Europe, the regulation of biostimulants in the US is still
not clearly defined and thus threatens to slow down its expected growth. On the 20th of December 2018,
the 2018 Farm Bill was passed into law as the Agricultural Improvement Act and had recommendations
regarding plant biostimulants [123]. According to the Bill, a biostimulant is described as “a substance
or micro-organism that, when applied to seeds, plants or the rhizosphere stimulates natural processes
to enhance of benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, or crop quality
and yield.” The regulation of biostimulants is dependent on the active components of the product

http://data.europa.eu/eli/reg/2003/2003/oj
http://data.europa.eu/eli/reg/2019/1009/oj
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02008L0098-20180705
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and the claims made for it. Thus, a plant biostimulant could either be considered a plant regulator
under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), leading to its regulation by
the Environmental Protection Agency (EPA). Alternatively, the biostimulant can be regulated by state
departments of agriculture that regulate fertilizers, plant and soil amendments, and other products not
regulated by FIFRA. Following the 2018 Farm Bill, in March 2019, the United States EPA released draft
guidance on plant biostimulants entitled: Guidance for Plant Regulator Label Claims, Including Plant
Biostimulants (https://www.federalregister.gov/documents/2019/03/27/2019-05879/pesticides-draft-
guidance-for-pesticide-registrants-on-plant-regulator-label-claims-including-plant) [124]. The draft
describes a plant biostimulant as “a naturally-occurring substance or microbe that is used either by
itself or in combination with other naturally-occurring substances or microbes to stimulate natural
processes in plants or the soil to improve nutrient and or water use efficiency by plants, help plants
tolerate abiotic stress, or improve the physical, chemical, and or biological characteristics of the soil as
a medium for plant growth.” The draft also provides clarity on claims that are considered non-plant
regulator claims and those that are plant regulator claims. Plant regulators can cause the acceleration,
retardation, or modification of a plant, or produce growth unlike non-plant regulators, which merely
improve conditions to aid in plant growth and nutrition.

9. Conclusions

With the rising demand to meet the nutritional requirements of a growing population and
widespread consumer awareness of environmentally-friendly agricultural practices as well as strict
regulations on the use of chemical fertilizers, there is an urgent need to find alternative methods of
sustainable horticultural production through technical and technological innovations. The use of plant
biostimulants from fish by-products can improve nutrient uptake, nutritional efficiency, plant yields
and the quality of products and is a promising alternative to conventional chemical fertilizer use. This
has led to an increase in the demand for plant biostimulants and an exponential market growth, which
is set to continue with the same growth trajectory over the next few years.

The industrial processing of fish produces large amounts of by-products that can be transformed
into value-added products such as plant biostimulants. The application of smaller quantities of fish
protein hydrolysates in horticultural practices has resulted in increased crop yields and fruit and
vegetable quality compared to chemical fertilizers in several studies [5,18,42]. Fish processing waste
products are currently being transformed into protein hydrolysate liquids or solids. The processing
involves several steps such as chemicals or enzymatic hydrolysis, filtration, drying and storage and
many of the processing parameters of these steps are governed by the intended use of the final product.
To enable consistent product quality, analytical test techniques on products such as SDS PAGE and
NMR are often used. The regulation of biostimulants for use in horticulture has also been a topic of
intense discussion. The EC and USDA have now provided a framework for the regulation and use of
biostimulants in Europe and the US respectively. In line with the (EU) 2019/1009 regulation and the
onus that it placed on manufacturers to justify a biostimulant claim, EBIC has proposed some general
guiding principles to follow when justifying plant biostimulant claims [119].

The use of biostimulants in agriculture continues to increase in popularity, and thus more research
is necessary to explore all the compounds contained in a variety of processing waste, such as in fish
processing with biostimulant activity. Moreover, data from research will also provide further insights
into the mode of action of biostimulants, which may open more avenues for specific biostimulant
formulations as well as other possible agricultural applications. Recently, Futureco Bioscience launched
a novel biostimulant Radisan®, that is rich in microelements, amino acids, peptides and phytohormone
activators (https://www.futurecobioscience.com/en/products/biostimulants/#radisan). This is further
testament to a growing interest in the use of plant biostimulants in horticulture; thus, the elucidation of
their mechanism of action becomes critical. Research concerning wastes from dairy processing recently
stressed that the timing, mode and frequency of application of biostimulants needs to be optimized

https://www.federalregister.gov/documents/2019/03/27/2019-05879/pesticides-draft-guidance-for-pesticide-registrants-on-plant-regulator-label-claims-including-plant
https://www.federalregister.gov/documents/2019/03/27/2019-05879/pesticides-draft-guidance-for-pesticide-registrants-on-plant-regulator-label-claims-including-plant
https://www.futurecobioscience.com/en/products/biostimulants/#radisan
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for maximal effects on plant health. It is also clear that the benefits to plants may vary among years
depending on weather and other factors [125].
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