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Multi-scale modeling of intensive macroalgae
cultivation and marine nitrogen sequestration
Meiron Zollmann1✉, Boris Rubinsky2, Alexander Liberzon 3 & Alexander Golberg1

Multi-scale macroalgae growth models are required for the efficient design of sustainable,

economically viable, and environmentally safe farms. Here, we develop a multi-scale model

for Ulva sp. macroalgae growth and nitrogen sequestration in an intensive cultivation farm,

regulated by temperature, light, and nutrients. The model incorporates a range of scales by

incorporating spatial effects in two steps: light extinction at the reactor scale (1 m) and

nutrient absorption at the farm scale (1 km). The model was validated on real data from an

experimental reactor installed in the sea. Biomass production rates, chemical compositions,

and nitrogen removal were simulated under different seasons, levels of dilution in the

environment and water-exchange rate in the reactor. This multi-scale model provides an

important tool for environmental authorities and seaweed farmers who desire to upscale to

large bioremediation and/or macroalgae biomass production farms, thus promoting the

marine sustainable development and the macroalgae-based bioeconomy.
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Marine conservation and sustainable development is
essential for achieving the United Nations’ Sustainable
Development Goals1,2. Large scale seaweed (macro-

algae) farms (> 1 km) could proffer a sustainable and envir-
onmentally safe means for biomass production for biorefineries
without expanding agricultural lands or freshwater requirements.
Such macroalgal biorefineries3–7 could supply the soaring
demand for food, energy and raw materials. Furthermore, sea-
weed aquaculture can be utilized for eutrophication
mitigation8–11, thus contributing to the international effort to
abate nutrient over-enrichment in coastal ecosystems12,13 (i.e. the
Mediterranean Action Plan2). However, the implementation of
commercial cultivation of seaweed beyond East Asia countries is
limited, because of a lack of farming tradition, undeveloped
markets, and a questionable economic viability14. Large-scale
commercial macroalgae cultivation, which is considered a new
technology in most countries, could be advanced using multi-
scale models. The use of multi-scale models to promote new
technologies in reduced time and cost was demonstrated in the
Carbon Capture Simulation Initiative15. The Carbon Capture
Simulation Initiative, a partnership among national laboratories,
industry, and universities, was established to enable accelerated
commercialization of carbon capture technologies by developing
multiscale models and simulation tools, used to improve design
and reduce scale-up risk. Similarly, advances in cultivations of
seaweed from small-scale activities to large scale implementation
could also benefit from the availability of multiple scale models.
We propose that these multi-scale models could facilitate the
design and optimization of large seaweed farms by incorporating
in the large scale models data from cultivation activities in a small
scale16,17, and demonstrate it in a study with mathematical and
experimental parts.

Current macroalgae growth and nutrient dynamics models
were developed for specific applications. For example, long-term
ecological models that attempt to predict macroalgal productivity
and seasonal blooms in prone ecosystems18–29 or “black box”
culture models that focus mostly on on-shore photobioreactors or
tanks11,30 or offshore extensive cultivation31–33. These models,
which pursue a basic understanding of the thermodynamics of
individual algae thalli and photobioreactors34, can provide a
general idea about productivity and seasonal effects on algae
growth. However, they do not incorporate spatial effects at the
scale of the farm and its environment and therefore cannot
predict how the algae would behave in a real-life large-scale farm.
On the other hand, as proposed above, multi-scale models that
extend from the scale of a single plant to the scale of the farm
could be used for the design of real-life scale seaweed farms17.
Such a multi-scale model could incorporate available small-scale
mathematical models and small-scale experimental data. This
challenging task involves the combination of multiple biological,
engineering and environmental factors and is the focus of this
research.

Recently, some studies have proposed to apply intensified
macroalgae cultivation, usually done in photobioreactors, also at
near- and off-shore seaweed farms35,36. Intensified cultivation
systems rely on frequent harvesting and could benefit from
temporal multi-scale models that can predict biomass production
and chemical composition in a time scale of days. As a case study,
we used data from a Mediterranean Sea near-shore intensive
growth experimental reactor used for free-floating Ulva species
cultivation, which was described by Chemodanov et al.36. This
reactor employs airlift pumps and bottom aeration and is suitable
for shallow coastal areas or estuarine systems, in which macro-
algae have a natural important role in nutrient cycling26. As these
environments are the most prone to harmful eutrophication37,38

which is responsible for significant environmental and economic

damages38, the added value of nutrient bio-sequestration may
increase the economic viability of seaweed cultivation in such
locations.

Finally, the gap addressed in this study is the shortcoming of
existing models in predicting biomass yield, biochemical com-
position, and ambient nitrogen concentrations in the farm scale.
Thus, we develop a theoretical multi-scale model for macroalgae
growth and nitrogen sequestration in an intensive cultivation
seaweed farm, which is regulated by temperature, light and
nutrients (Fig. 1). The model is used to simulate farm-scale
biomass production and nitrogen removal in a nutrient-enriched
environment, at a temporal and spatial resolution and scale that is
not available today. Specifically, the model predicts farmed sea-
weed biomass and sequestered N in different seasons. The model
incorporates the required nutrient concentrations and how is the
spatial distribution of biomass composition and productivity
affected by levels of airlift pumping and dilution in the envir-
onment. Our model enables the investigation of farm spatial and
temporal responses to environmental variations and provides
useful insights on the effects of farm design and operation on the
compliance with environmental and commercial requirements
(i.e. uniform biomass composition and minimal energy con-
sumption). Altogether, this multi-scale model provides an
important tool for environmental authorities and seaweed farm-
ers who desire to upscale to large bioremediation and/or mac-
roalgae biomass production farms, thus promoting the
macroalgae-based bioeconomy.

Results and Discussion
Calibrated model. The calibration process, described in detail in
the Supplementary Methods and results, started with light
extinction parameters Ka and K0 and continued to growth
function parameters (parameters of Eq. 1 and eq S1 in the Sup-
plementary Methods). Based on a scan of 600 parametric com-
binations within a pre-defined range, which was built based on
literature values (Supplementary Table 4), we manually fitted
parametric combinations that provide both good RMSREs
(<15%) and experiment-specific good relative errors (<20%). We
used both criteria to prevent over- or under dominance of specific
returns and environmental conditions (i.e. three returns with a
low error and one with a high error). The chosen parametric
combination yielded RMSRE1= 10.3% for the first step and
RMSRE2= 13.7% for the second step (Supplementary Figures 6-9
and Supplementary Table 5), which are reasonable average rela-
tive errors for biological models39,40. Furthermore, these relative
errors are significantly lower than the errors of models published
in prior literature, relating to Ulva sp. growth in natural envir-
onments (i.e. 35–110%41), demonstrating the potential advance-
ment in our dynamic model.

Light extinction parameters. We found that the model is not
sensitive to K0 in the examined range as the optical path in water
is short. The best fit between in- and ex-situ light intensity
measurements were found using a light extinction coefficient of
Ka = 0.15 (Supplementary Figure 10), which is higher than the
previously used Ka = 0.0111 for Ulva, but similar to values used
for other algae species42. The higher value better represents the
significant effect of biomass density on light extinction.

Growth function parameters. fTemp parameters, Topt and Tmax, were
adjusted to 18 and 31.5 °C, fitting the literature optimal temperature
range of 15–20 °C43,44. KI was adjusted to 20 μmol photons m−2 s−1

(Supplementary Figure 11). However, KI is a flexible parameter and is
known to decrease when the Ulva is acclimated to low light
intensities45.λ20 was adjusted to 2.2% day−1 (0.16% light hour−1,
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Supplementary Fig. 11), which is low compared to literature values
(5–6.5% day−1). A limitation of this study is that the calibration
system was mostly P-limited (N:P > 203), a fact that is not repre-
sented in the model and may lead to underestimations of biomass
production under P-saturation conditions. Furthermore, the agree-
ment between modeled and measured final Nint was low, which may
be a result of the P-limitation, as high N:P ratio can inhibit
N uptake44.

Sensitivity analysis. The parameter with the largest total effect on
the total biomass production and N bio-sequestration (Sobol
sensitivity index of 0.35–0.4 in the range of 0 to 1) is Ka. KI and
λ20, with total sensitivity indexes of 0.15–0.28 and 0.09–0.1,
respectively, have a moderate effect, and μmax has a weak effect
(~0.02) on total biomass production and N bio-sequestration.
Nenv, in comparison, is highly sensitive only to d (sensitivity index
of 0.97). The effect of other parameters within examined range is
negligible (<0.01) (Fig. 2). This analysis shows that our multi-
scale model is sensitive to parameters related to light (fI), which,
in the simulated climate, limits growth only in winter when days
are short and sky may be cloudy, and when biomass density in
reactor is high. The sensitivity of the model to parameters related
to N (ψNext

and f Nint
), on the other hand, is low, as both reach a

steady state relatively rapidly in N rich environments and affect
model outcomes only when Next and Nint are low (i.e. Next below
KS or Nint below N intcrit). The low sensitivity to N related para-
meters can be understood in greater depth by the time-scale
separation idea46. In diluting environments (d > 0), small changes
in d have significant effects on the results of the multi-scale model

as they force rapid Nenv and Next attenuation regardless of bio-
mass uptake. contrarily, small changes in QP have no effect on
model results as throughout the examined range N supply does
not limit growth. The model was found to be insensitive to fTemp

and fs related parameters in the simulated environmental condi-
tions, but this finding should be examined with a wider range of
temperatures and salinities. Model sensitivity to λ20 was higher
than the sensitivity to μmax probably due to the dependence of μ
also on other parameters (T, S, I and Nint), that lessen the direct
effect of μmax on model results.

Seasonal trends in biomass production and nitrogen removal.
Productivity and N sequestration vary significantly seasonally, ran-
ging between 0 and 26.8 gDWday−1 m−2 (0–30 gDWday−1 m−3)
and between 0.2 and 1.2 gN day−1 m−2 (0.2–1.3 gN day−1 m−3),
with average values of 13.3 gDW day−1 m−2 (14.9 gDWday−1 m−3)
and 0.7 gN day−1m−2 (0.8 gN day−1 m−3) (Fig. 3). In a farm of 100
chained reactors (cultivation area of 200m2), this translates into
annual productivity of 1210 gCm−2 year−1, almost four times the
estimated average productivity of terrestrial biomass in the Middle
East (290 gCm−2 year−1 47) and N sequestration of 249 gNm−2 year
−1. Peak production is expected from the end of February till the
middle of March, and a second production peak is found in
November. In contrast, production during the summer is very low.
Level of N sequestration follow the same seasonal trend (Pearson’s
r= 0.999 in a non-diluting environment), although the correlation
between production and N sequestration is expected to decrease in
larger farms or in diluting environments, in which environmental N
could be depleted (i.e. Pearson’s r= 0.996 in the diluting

Fig. 1 A schematic description of the multi-scale model. The thallus scale (1 cm, green circle) is composed of a simple metabolic model of Ulva, in which
the production of new biomass (Ulva icon) is affected by internal nitrogen (N, full green cloud) and by constraining environmental conditions, including
light intensity, salinity and temperature (yellow clouds). The reactor scale (1 m, U shape pictures) adds light extinction effects (yellow graduated arrow),
the concentration of external N in the reactor and the concentration of environmental N outside the reactor (dark/light blue clouds, depending on N
concentration). The farm-scale (1 km, row of reactors starting at Reactor #1 and counting downstream to Reactor #n) adds the nutrient reduction caused
by absorption in reactors along with the flow (Blue graduated arrow). Green and blue clouds represent the model state variables. Numbers represent the
following processes: 1. Biomass growth; 2. Dilution of internal N by growth; 3. N uptake; 4-5. Water exchange by airlift pumping and overflow, and 6.
Biomass losses.
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environment simulated below). The differences in N sequestration
between the diluting environment (d > 0), in which high and low Nenv

water is mixed, and the non-diluting environment (d=0) is discussed
below in the spatial effects section. This seasonal variation follows
changes in water temperature. Optimal water temperature (i.e. 18 °C,
as found in the calibration of the model) lead to high productivities
and high water temperatures, close to Tmax (i.e. 29.5 °C), lead to very
low productivities (Supplementary Figure 5). Therefore, effective bio-

sequestration cannot be applied during the summer in the modeled
conditions.

To reduce environmental N levels below a defined, envir-
onmentally benign, level, different seasons require different sizes
of the seaweed farm. Considering that a 10 μM threshold prevents
extreme eutrophication48, to avoid damage to the environment, in
winter, the dimension of the farm should be 1,462 m2, in spring
the farm should be 914 m2 and in the fall 1,192 m2 (Fig. 4a). From
the perspective of the model, these dimensions of the farm
are between 600 to 900 reactor size macro elements, i.e. the
assumption that the single element control volume used in the
analysis is small relative to the entire domain of analysis is
acceptable. As important, these results demonstrate the value of
this analysis. They provide a measure on how to design a large
seaweed farm that is safe for the environment.

Following are additional examples of how this multi-scale model
can be used to design large seaweed farms. A farm designed
according to winter N sequestration abilities will produce 7.1 tons
DW year−1, whereas farms designed according to spring or autumn
sequestration abilities will produce only 4.4 or 5.8 tons DW year−1,
respectively. As a general trend, in high Nenv levels, the relationship
between added reactors and N sequestration is linear, but in lower
N levels, closer to KS, uptake is slower, and more reactors are
needed per sequestration unit. Figure 4b–d present N and biomass
dynamics in the last reactor in a farm designed to achieve the
threshold in all seasons (731 reactors). Fixed year-round cultivation
cycles result in time and space non-uniform chemical composition.
Figure 4c also demonstrates how N content in the last reactor
changes between seasons, with higher N content during winter and
lower N content during autumn and spring, when productivity is
higher. Uniform chemical composition, if required, can be achieved
by adjusting lengths of cultivation cycles to environmental
conditions, specifically, temperature, day length and Nenv. Short-
ening autumn and spring cultivation cycles to 11 and nine days,
respectively, for example, will enable the production of biomass
with constant Nint, although won’t comply with the defined 10 μM
threshold during the spring (Supplementary Figure 12). However,
shorter cultivation cycles come at an expense of higher labor
demand and do not necessarily grant higher accumulated yields.

Fig. 3 Year-round distribution of mean productivity and N sequestration in a seaweed farm, in two levels of simulated dilutions. a Mean productivity
(gDWm−2 day−1, green). b mean nitrogen sequestration (gNm−2 day−1) in a non-diluting environment (d =0, dark blue) and a diluting environment
(d=0.05, 5% dilution between each two reactors, light blue) vs time of the year for a farm of 100 reactors. Shaded region represents a 15% calibration error.

Fig. 2 Illustrated sensitivity of simulated biomass production, N
sequestration and final environmental N levels. Simulated biomass
production (black circles), N sequestration (blue stars) and final
environmental N levels (gray squares) to model parameters, as measured
by the Sobol method.
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Spatial effects controlled by dilution and pumping. In our
model, spatial effects on biomass composition and growth rate
appear only when Nenv decreases to limiting levels. The rate of
this decrease can be controlled by airlift pumping flow and is
accelerated in a diluting environment.

Pumping flow. QP can be manipulated to control N flux into
reactors and thus also chemical composition and growth rate of
the algae (Fig. 5). The immediate effect of Qp is on the Nenv vs Next

dynamics. High Qp minimizes differences between Nenv and Next,
which leads to a faster reduction in Nenv and slower reduction in
Next compared to the trajectories of Nenv and Next with lower Qp.
Simulating reactors without pumps (Qp = 0, dark blue line)
decouples Next from Nenv and eliminates the spatial effects of
nutrient absorption. Thus, although Nenv does not change, rapid
depletion of Next leads to a decrease in Nint which is followed by a
decrease in produced biomass. Therefore, in the described system
pumping is essential. High Qp promotes bio-sequestration but
may result in a steeper spatial gradient of Nint compared to low
Qp. Finally, Qp can be manipulated according to farm design
requirements, controlling farm size and biomass composition. It
should be mentioned that water exchange by pumping has
additional important contributions, such as the supply of inor-
ganic carbon, removal of waste material which may inhibit
growth, and temperature control36,49. Furthermore, in an
estuarine environment, pumping water from 1-2 m below the
surface can increase salinity, which is crucial for the growth of
marine macroalgae species. However, water pumping is an
energy-consuming component of seaweed farms and should be
optimized to minimize its carbon footprint. Previous trials to
cultivate Ulva in the described reactors without water exchange
were unsuccessful in our group36. However, a thorough review of
seaweed cultivation49 mentioned that water exchange in Ulva

cultivation can be reduced to 10% day−1, equivalent to 15 l h−1 in
our work, without a significant change in yield.

Dilution. In highly diluting environments, bio-sequestration
would be usually ineffective. However, such environments are
not prone to eutrophication and do not require nutrient removal.
Figure 6 presents the spring system dynamics in a 100-reactors
farm, subjected to 5% dilution between each two reactors, similar
to dilution rates used in literature32. Compared to the first reactor
(darkest green), which is not affected by dilution, downstream
reactors meet lower Nenv concentrations which are translated into
lower Next and gradually into lower Nint and lower biomass
production. In the simulated conditions (Nenv0 = 500 µM),
annual decrease in biomass production due to dilution (968 to
962 kgDW, 0.6%) is significantly smaller than the annual decrease
in N sequestration (50 to 32 kgDW, 36%) (Fig. 3). This difference
can be explained by the production of low protein biomass in the
downstream, diluted, areas. Larger farms may not be practical in
high-dilution locations, as downstream Nenv concentrations
would not allow any growth beyond what the initial Nint allows.
However, using high-protein upstream biomass as a continuous
seeding feedstock for further cultivation may enable sustainable
low protein biomass production in such an environment. Fol-
lowing a similar concept, previous works suggested performing a
two-step cultivation process, starting with high biomass produc-
tion in a nutrient-rich environment and finishing with carbohy-
drate accumulation in nutrient-limited environment50. As
opposed to the protein-rich biomass that is produced in N
enriched environments and can be used for food and feed
applications, such carbohydrate-rich biomass is advantageous for
the extraction of different polysaccharides (i.e. starch, ulvan and
cellulose) and can be processed into various forms of biofuels and
chemicals5.

Fig. 4 Nenv, Nint and m dynamics in a seaweed farm in different seasons, along a 14 days cultivation period. a Final Nenv concentration (μM-N) after
14 days of cultivation as a function of the number of reactors in different seasons (Winter in blue, Spring in orange and Autumn in green). b–d Nenv, Nint and
m dynamics along 14 days’ cultivation periods in different seasons, for the last reactor in a farm of 731 reactors. Shaded region represents a 15%
calibration error.
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A few previous studies assessed the effectiveness of eutrophica-
tion bioremediation in China by macroalgae cultivation. Gen-
erally, this was examined by comparing N and P open sea levels
in cultivation season and off-season, by calculating how much
nutrients were removed based on published data and biomass
composition analysis, and by following eutrophication symptoms,
such as hypoxia and harmful algal blooms9,51,52. One study, by
Fan et al.8, advanced into actively increasing nutrient removal by
ecological engineering, specifically artificial upwelling, which is
the pumping of nutrient-rich deep water to the surface. Fan et al.8

found that artificial upwelling can increase the average yield of
kelp seaweed by 55 g per plant, and developed a few useful
recommendations regarding the conditions in which intensified
cultivation can be worthwhile. Although in a different setup and
framework, our work strengthens their recommendation to
optimize pump operation according to algae requirements
(nutrients, water exchange and salinity and temperature control),
environmental conditions and regulations, and energy costs.
These considerations change seasonally and spatially, even within
the farm itself. Our model, developed especially for this cause, can
help relating to spatial differences during the design and the
operation of seaweed farms.

The environmental significance of this work relates to two
major environmental issues: climate change and water pollution.
The model developed in this work can be used to quantify and
optimize the environmental significance of large-scale seaweed
farms, specifically eutrophication mitigation. Thus, bioremedia-
tion by seaweed farms can be advanced from an unplanned
external benefit to an inherent part of coastal development.

Fig. 5 Nenv, Next, Nint and m dynamics along a 14 days cultivation period, simulating Qp values of 0, 15, and 460 l h−1. Arrows highlight differences
between first and last reactor: a Nenv dynamics: differences for Qp = 460 l h−1 and for Qp=15 l hour−1 are marked by (1) and (4), b Next dynamics:
differences for Qp=460 l h−1 and for Qp=15 l hour−1 are marked by (2) and (5), c Nint dynamics: differences for Qp= 460 l hour−1 and for Qp = 15 l hour−1

are marked by (3) and (6), and d m dynamics. Simulation parameters and IC: 731 reactors, spring season, Nenv0 = 250 μM-N, d = 0. Shaded region
represents a 15% calibration error.

Fig. 6 Nenv, Nint and m dynamics along a 14 days cultivation period in a
diluting environment in a farm of 100 chained reactors. The lines
represent Nenv, Nint or m in each fifth reactor, starting from x=1 (darkest
green) and progressing downstream along the arrows towards the last
reactor (x=100, lightest green). Simulation parameters and IC: spring
season, Nenv0 = 500 μM-N, d = 0.05.
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Furthermore, if eutrophication mitigation is compensated by the
authorities, this model can play a key role and incentivize the
establishment of new seaweed farms, accompanied by additional
environmental and economic benefits, on the local (i.e. marine
conservation and economic development) and global (i.e. carbon
sequestration, sustainable biomass supply and mitigation of fresh
water stress) scales. In addition, with some modifications, this
model can be used to model fish cages and integrated multi-
trophic aquaculture (IMTA) and promote sustainable aquaculture
and marine development. Altogether, this work utilizes model
simulations to demonstrate production and sequestration poten-
tials of macroalgae farms under different conditions and
operation modes, and provides a quantitative tool enabling to
promote the future deployment of such farms in large scales and
maximize their benefits.

At the same time, this model is still theoretical as it was
calibrated only in the reactor scale and using a small dataset.
Farm scale calibration is not possible at this stage, as the modeled
reactor is a pilot scale experimental reactor. However, alternative
farm-scale calibrations may be performed in the future by
adjusting the model to existing farm designs and calibrating it
with field data. Additional limitations relate to the low-resolution
data regarding nutrient concentrations in the water, intrinsic
variations in biomass behavior which are currently not modeled
and the lack of hydrodynamical data. Therefore, further research
and development is required before this model could be useful for
field application.

Conclusions
We developed a multi-scale model for Ulva sp. macroalgae
growth and nitrogen sequestration in an intensive cultivation
farm, regulated by temperature, light and nutrients. The model
enables spatial simulations by incorporating light extinction
effects at the reactor scale (1 m) and nutrient absorption effects at
the farm scale (1 km). Specifically, we simulated: 1. year-round
productivities and N sequestration in the farm; 2. the farm size
required for eutrophication mitigation in different seasons; and 3.
spatial distribution of biomass production, chemical composition
and environmental N along the farm in different dilution rates in
the environment and in different airlift pumping flows. The
simulations we presented refer to a theoretical estuarine envir-
onment comprising a constant 1D current, but was formulated so

that it could be later incorporated into complex oceanographic
models (i.e. the Nenv equation follows the structure of the
Convection–Diffusion equation, as used, for example, by the
HAMOCC53 and the CSIRO54 models).

The high-resolution spatial and temporal model developed in
this work, is an important step toward implementing precision
agriculture techniques in seaweed aquaculture. Such advanced
techniques are expected to improve productivities, efficiencies
and accompanied environmental benefits, leading the way to
sustainable marine development, accompanied by multiple eco-
nomic and environmental benefits regarding climate change and
water pollution mitigation.

Future studies need to validate the model on higher-resolution
data of all state variables and engage in uncertainty quantification
in different scales, including the farm-scale. In general, the
robustness of the model will increase by further calibrating it with
wider and more diverse empiric data sets, that will raise addi-
tional important constraining factors. Future efforts to improve
the model should include adjusting it to P limited environments
and relating to various phenomena that cause uncertainty in
macroalgae cultivation. These phenomena include, for example,
an unexplained decline in biomass, sudden sporulation, age, and
history effect on the growth rate, water flow effects on growth and
chemical composition and pest damage. By improving the ability
to understand and describe both temporal and spatial phenomena
in a seaweed farm in a resolution of days, these improved models
should help to optimize the design of seaweed farms to combine
environmental improvement and commercial viability.

Methods
Our model incorporates multi-scale spatial effects: light extinction at the reactor
scale and nutrient absorption at the farm scale, into a mathematical model of the
Ulva sp. macroalgae metabolism3 (See schematic description in Fig. 1). The spatial
effects employ the following multiscale procedures: 1. from a single thallus scale
(1 cm) to a reactor scale (1 m), relating to light extinction in the reactor, and 2.
from a reactor scale to a farm-scale (1 km), relating to nutrient absorption in the
farm. A Step-by-step formulation of the multi-scale model, starting at the thallus
scale (Supplementary Figs. 2), is detailed in the Supplementary Methods.

The model was calibrated using experimental data from the reactor scale,
relating to a 1.785 m3 U-shape bottom aerated (40–45 l min–1) grazing proof cage
reactor. Additional water (11.03 m3 per day) was pumped into the reactor from 1m
depth using four airlift pumps. Ulva sp. biomass was stocked in the reactor at a
density of 1 kg FWm3 with an illuminated area of 2 m2. Additional details about
the reactor are available in Supplementary Figs. 3–4 and Supplementary Table 2

Fig. 7 Flowchart of study methodology. Step 1: model formulation, including assumptions, governing equations and scale elements; step 2: model
calibration, including light extimction and growth function parameters, and a sensitivity analysis, and step 3: model simulations, including seasonal trends in
biomass production and nitrogen removal and spatial effects controlled by dilution and pumping.
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and in Chemodanov et al.36. After calibration the model was qualified with a
sensitivity analysis.

Thereafter, biomass production rates, chemical compositions and farm-scale nitrogen
removal was simulated under different seasons, levels of dilution in the environment (0-
5% dilution ratio between every two reactors) and water-exchange rate in the reactor (0,
15, and 460 l h−1). The detailed methodology of the work is presented in Fig. 7.

Model assumptions. The Ulva metabolic model assumes that the dynamics of the
limiting nutrient, in this case nitrogen (N), under the constraining effects of
environmental conditions (light intensity (I), temperature (T) and salinity (S))
predicates the dynamics of biomass growth and chemical composition. In the
marine environment, the limiting nutrient is usually N55 and our model focuses on
N limited environments. However, similar models can be developed also for other
elements such as phosphorus (P) and ferrous that may limit growth too in some
marine environments. Our model also assumes that the organic carbon reserve,
depending on carbon uptake and photosynthesis rates, is not limiting within the
modeled conditions. The model follows the Droop Equation concept, in which the
effect of the external, environmental, nutrient concentration on growth is mediated
by internal nutrient concentrations (“cell quota”)18,56. This is rather important as
changes in internal N concentration occur gradually in a typical time scale of days
whereas significant changes in environmental N concentrations may occur much
faster, on a time scale of hours57.

Our multi-scale model relates to cultivation in semi-closed reactors with
controlled water exchange. This leads to the differentiation between nutrient
concentrations inside the reactor that interact with the biomass directly, named
here external N, and nutrient concentrations outside the reactor that are affected
only secondarily, named here environmental N. Environmental N is the connecting
agent that passes onwards in the flow the accumulating signal of changing N
concentrations, which is translated into spatial differences in biomass composition
and growth rate.

We used as a reference a cultivation reactor as described by Chemodanov
et al.36 (see above). Each reactor is assumed to be well-mixed by bottom aeration
and is connected to airlift pumps that supplies the reactor with fresh seawater and
nutrients. We also assume water flow through reactor boundaries is negligible.

We simulate the large-scale farm as composed of a continuum of macroscopic
reactor size elements (compartments). This type of mass transfer model is
commonly used in pharmaceutics which studies mass transfer through
macroscopic units referred to as compartment58. The model assumes that the
conditions in each reactor size control volume (compartment) can be accurately
represented by one average value (external N) and that the domain of analysis
(farm) is much larger than the macroscopic reactor size element.

We define our large-scale farm model as a 3D model (Supplementary Fig. 1).
The x-axis is the direction of the flow and all simulations relate to one row of
reactors in this direction. Each reactor constitutes an N sink, causing the spatial
change of environmental N concentrations in the direction of the flow (x). By
assuming the width of this change is small concerning the distance between the
rows, this model becomes applicable also to multiple rows of reactors, with no
variation in the y-axis. Finally, although light extinction increases with depth,
potential variations in biomass with depth (z-axis) can be averaged out due to the
well-mixed reactors’ assumption.

Model governing equations. The multi-scale model is based on four governing
ordinary differential equations (ODEs), describing the mass balance of four state
variables: biomass density in a reactor (m, g Dry Weight (DW) l−1, Eq. 1), biomass
internal concentration of N (N int; % gN gDW�1, Eq. 2), external concentration of
N in the reactor (Next; μmol�N l�1, Eq. 3) and the environmental N con-
centration outside the reactor (Nenv ; μmol�N l�1, Eq. 4) under varying tem-
peratures, light intensities and salinities.

∂m
∂t

¼ ðμ� λÞm;

μ ¼ μmaxf ; f ¼ f Tempf S min ff Nint
; f Pint

; f Ig

Initial ConditionðI:CÞ : mðx;t¼0Þ ¼ m0 ð1Þ
Where μmax (h−1) is the maximum specific growth rate and f is the combined
growth function, made of fTemp, fs, f Nint

, f Pint and fI, which are the T, S, Nint Pintand I
growth functions3 (see full equations in Supplementary Methods). This function
includes also light as a potential limiting factor under Leibig’s law of the minimum,
regardless of the difference between light and nutrient growth mechanisms, as
appears in previous works42,59. λ is biomass specific losses rate as a function of T
and is formulated of λ20 (h−1), the specific rate of biomass losses and θ, an empiric
factor of biomass losses3. λ does not include losses by grazing, sporulation and
fragmentation by storms, which vary between different environments and are
highly affected by extreme events. We adjusted daily specific growth and losses
rates to hourly rates, assuming for simplicity that growth and biomass losses occur
only during light hours (see details in Supplementary Methods). This assumption
ignores night growth that occurs due to metabolites produced during light-time
photosynthesis60, and thus distorts growth distribution throughout the day.

However, the assumption does not affect total daily growth and therefore does not
impair the model accuracy at a temporal resolution of days to weeks.

∂Nint

∂t
¼ ψNext

� N intfm

ψNext
¼ N intmax � N int

N intmax � N intmin

VmaxNext

KS þ Next

I:C : N intðx;t¼0Þ ¼ N int0 ð2Þ
Where ψNext

(μmol-N gDW−1 h−1) is the N uptake function, formulated of N intmax

and N intmin (%gN gDW�1), the maximum and minimum Nint concentrations,
respectively, Vmax (μmol-N gDW−1 h−1), the maximum N uptake rate and KS

(μmol-N l−1), the N half-saturation uptake constant. �N intfm describes Nint

dilution in biomass by growth.

∂Next

∂t
¼ QpðNenv � NextÞ

Vcage
� ψNext

m

I:C : Nextðx;t¼0Þ ¼ Next0 ð3Þ
Where Qp (l h−1) is the airlift pumping flow and Vcage (m3) is the reactor volume.
The change in Next is the sum of N in incoming airlift pump flow, N in reactor
overflow and N uptake by the biomass in the reactor.

∂Nenv

∂t
¼ ½�QsðNenvx�1

ð1� dÞ � Nenvx
Þ �QpðNenvx

� Nextx
Þ�

Vcage

I:C : Nenvðx;t¼0Þ ¼ Next0; Boundary ConditionðB:CÞ : Nenvðx¼0;tÞNenvðx¼0;tÞ ¼ Next0

ð4Þ
Where Nenvx

is Nenv below reactor x at time t, Nenvx�1
is Nenv below reactor x-1 at

time t, d (%) is the dilution ratio between every two reactors and Qs (l h−1) is the
stream flow through an area equivalent to the reactor narrow-side cross-section.
Thus, the change in Nenv is the sum of incoming N flows (upstream flow and
reactor overflow) and outflowing flows (downstream flow and airlift pumping into
the reactor). This form of Convection-Diffusion equation may be adjusted in the
future to fit also more complex hydrodynamic models (i.e. dynamic 2/3D currents
compared to a constant 1D current simulated in this work). All four ODEs were
solved numerically with hourly time steps.

Scale elements in model. The multi-scale model has two scale elements: 1. light
extinction at the reactor scale that requires dynamic averaging of light intensity per
biomass unit, and 2. nutrient absorption at the farm scale that requires following
the dynamics of environmental N.

Single thallus to reactor. In the metabolic model of a single thallus scale, growth is
affected directly by incident light intensity (Eq. 5). This function follows the
commonly used Monod model but could be replaced also by alternative form, such
as the hyperbolic tangent model or the simplified light-inhibition model, all
acknowledged in the literature42. In transition to a reactor scale, light intensity is
averaged per biomass unit, as formulated by Oca et al.11 (Eq. 6). This formulation
considers water depth in the reactor, biomass density and light extinction coeffi-
cients of both water and biomass. In both equations, we multiplied I0 by a 0.43 PAR
constant, representing the ratio of the sunlight which is suitable for
photosynthesis61.

f ðIÞ ¼ I
KI þ I

PAR ð5Þ

Where I and KI (μmol photons m−2 s−1) are incident light intensity and light half-
saturation constant, respectively.

f ðIÞ ¼ Iaverage
KI þ Iaverage

PAR

Iaverage ¼
I0

K0Z þ KaSD
½1� expð�ðK0Z þ KaSDÞÞ� ð6Þ

Where Iaverage and I0 (μmol photons m−2 s−1) are average photon irradiance in the
reactor and incident photon irradiance at water surface, respectively, SD (gDW m−2)
is stocking density of biomass per unit of water surface in the reactor, K0 (m−1) is
water light extinction coefficient, Z (m) is maximum water depth in the reactor and
Ka (m2 gDW−1) is Ulva light extinction coefficient.

Reactor to farm. In a single well-mixed reactor, nutrient reduction by biomass is
local and does not accumulate along the stream. Therefore, Eq. 4, describing
changes in Nenv, is redundant. However, in a seaweed farm, spatial variations in
Nenv cannot be described without Eq. 4 that connects the reactors and the envir-
onment. Equation 3, describing changes in Next, was derived from the
Convection–Diffusion equation62 (Eq. 7). Equation 4, describing changes in Nenv, is
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based on the same equation, without the uptake term.

∂Next

∂t
¼ ∇ � ðD∇Next Þ � ∇ � ðvNext Þ � ψNext

m ð7Þ

Where D (m2 s−1) is the average diffusivity coefficient of dissolved inorganic N
species and v (m s−1) is the velocity field in which the dissolved nitrogen is moving.
Both Eq. 3 and Eq. 4 are derived from this equation, with specific simplifying
assumptions: 1. D is constant in space; 2. incompressible velocity flow, and 3. zero
net diffusivity, as the reactor is well-mixed and there is no concentration gradient
(∇Next ¼ 0). Therefore, Next in the reactor is affected only by the N supply by airlift
pump (normalized to reactor volume) and N uptake by algae. Equation 4,
describing changes in Nenv, follows the same principal form but without the
uptake term.

Model calibration. We calibrated the model parameters using experimental
growth data of Ulva cultivation in a single well-mixed sea-based reactor from
Chemodanov et al.36 (Supplementary Figures 3-4 and Supplementary Table 2).
First, we determined the Ulva light extinction coefficient, Ka, by minimizing the
root mean relative error (RMSRE1, Eq. 8) between modeled biomass growth from
three experiments based on: 1. in situ measured light intensity (Onset HOBO
Pendant®), and 2. light intensity data extracted from the IMS data base from the
Israel Meteorological Services (https://ims.data.gov.il/he/ims/6). This was done by
calculating RMSRE1 for 20 values and 320 different parametric combinations of
μmax, Ka, K1, n, Tmax, Topt, and λ20 in a defined range and identifying the Ka value
which results in the minimal errors. One experiment, where biomass degradation
could not be explained by the model, was omitted from the calibration process.
Next, using the same method, we determined the values of μmax, KI, n, Tmax, Topt
and λ20 (20 values and 280 different parametric combinations) by minimizing the
mean error between measured and modeled biomass growth (N= 4) using in situ
temperature data when available (in 3 out of 4 experiments) or IMS data otherwise,
and IMS light intensity data (RMSRE2, Eq. 9).

RMSRE1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1

PVmIn�PVmEx
PVmIn

�

�

�

�

�

�

N

v

u

u

t

; N ¼ 3
ð8Þ

RMSRE2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1

mf�PVmEx

mf

�

�

�

�

�

�

N

v

u

u

t

; N ¼ 4
ð9Þ

Where RMSRE1 is the Root Mean Square Relative Error between PVmIn (g DW l−1),
the predicted value of final biomass based on in-situ light intensity data and PVmEx

(g DW l−1), the predicted value of final biomass based on ex-situ light intensity
data, and RMSRE2 is the Root Mean Square Relative Error between mf (g DW l−1),
the measured final biomass and PVmEx.

Data from returns 2, 4, and 5 (Supplementary Table 2) was used for the
calibration of the light extinction coefficient, Ka, and data from returns 1, 2, 4, and
5 was used for the calibration of μ, Ka, K1, n, Tmax and Topt. Return 3 was not used
for calibration as its negative growth could not be explained by the model.

Sensitivity analysis. To examine how each parameter, in a defined range (Sup-
plementary Table 4), influences model simulations output, we analyzed farm-scale
sensitivity of state variables using SALib, the Sensitivity Analysis Library in
Python63. Specifically, the analysis focused on the projected values of total pro-
duced biomass, total accumulated Nint and average final Nenv, under the simulation
frame of a 100-reactors’ farm and one cultivation period per season, that should
suffice to observe both temporal and spatial effects of the different parameters.
First, 10 values and 420 random parametric combinations of all model parameters
(Supplementary Table 4) were generated using the Saltelli method64,65. Next, each
combination was run through the model, producing an array of possible biomass
production, N accumulation and final Nenv results. Finally, the results were ana-
lyzed using the Sobol analysis66, giving each parameter a first order and total
sensitivity index between zero and one.

Model simulations. The model was applied to simulate year-round cultivation of
Ulva sp. in a row of cultivation reactors in a nutrient-enriched estuary environment
located in a semi-arid climate. Data regarding nutrient concentrations, salinities,
water temperature and flow was taken from the long-term study of Suari et al.67 on
the Alexander estuary, located in the center of Israel (Supplementary Fig. 5 and
Supplementary Table 3). I data was extracted from the IMS database from the
Israel Meteorological Services (https://ims.data.gov.il/he/ims/6). Although S varies
with depth and can change dramatically according to flesh flood events and for-
mation of sandbar breaches67, effect on growth was minor and we used a constant
value of S=30 PSU. All constraining environmental factors except nutrients were
assumed to be constant in space. Each cultivation cycle started with a constant set
of initial conditions (m0;Nint;0;Next;0 andNenv;0) which applied to all reactors.
Harvesting back to initial biomass was performed every two weeks, and accumu-
lated biomass production was calculated. In addition, N removal from the envir-
onment was calculated as the difference between total N in final and initial
biomass. Specific simulations of seasonal N removal capacity were used to project

the number of reactors needed to achieve a 10 μM-N level threshold, which is
below levels found in extremely eutrophicated zones48, in each season. Finally, a
spatial perspective was added by examining the system dynamics under various
pumping levels and in a diluting environment, in which the enriched Nenv water is
diluted by mixing with lower Nenv water (i.e. 5% dilution between each two
reactors).

Statistics and reproducibility
The model developed in this study was calibrated versus growth
results from four independent cultivation experiments which
were reported in Chemodanov et al.36.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting this study, specifically for model calibration
and simulations, is available within the paper and its Supplementary Information files.
Experimental results used for calibration are presented in Supplementary Table 2.
Temperature and light intensity data are available in https://doi.org/10.5281/
zenodo.4062432 68. Other environmental data is available in Supplementary Table 3.

Code availability
The entire code of this study, written it Python (3.7.3), is available as an open source in
https://doi.org/10.5281/zenodo.4062432 68.
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